#!/usr/bin/env python3 # Convert GPT-J-6B h5 transformer model to ggml format # # Load the model using GPTJForCausalLM. # Iterate over all variables and write them to a binary file. # # For each variable, write the following: # - Number of dimensions (int) # - Name length (int) # - Dimensions (int[n_dims]) # - Name (char[name_length]) # - Data (float[n_dims]) # # By default, the bigger matrices are converted to 16-bit floats. # This can be disabled by adding the "ftype" CLI argument. # # At the start of the ggml file we write the model parameters # and vocabulary. # from __future__ import annotations import sys import struct import json from pathlib import Path import gguf import numpy as np from transformers import AutoConfig, AutoTokenizer, GPTJForCausalLM from transformers.models.gpt2 import tokenization_gpt2 if not 2 <= len(sys.argv) < 4: print("Usage: python {} dir-model [ftype]\n".format(Path(__file__).name)) print(" ftype == 0 -> float32") print(" ftype == 1 -> float16") sys.exit(1) # output in the same directory as the model dir_model = Path(sys.argv[1]) fname_out = dir_model / "ggml-model.gguf" # possible data types # ftype == 0 -> float32 # ftype == 1 -> float16 # # map from ftype to string ftype_str = ["f32", "f16"] ftype = 1 if len(sys.argv) > 2: ftype = int(sys.argv[2]) if ftype < 0 or ftype > 1: print("Invalid ftype: " + str(ftype)) sys.exit(1) fname_out = dir_model / ("ggml-model-" + ftype_str[ftype] + ".gguf") ARCH = gguf.MODEL_ARCH.GPTJ gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) print("gguf: get model metadata") config = AutoConfig.from_pretrained(dir_model) block_count = config.n_layer gguf_writer.add_name("GPT-J") gguf_writer.add_context_length(config.n_positions) gguf_writer.add_embedding_length(config.n_embd) gguf_writer.add_block_count(block_count) gguf_writer.add_feed_forward_length(4 * config.n_embd) gguf_writer.add_head_count(config.n_head) gguf_writer.add_rope_dimension_count(config.rotary_dim) gguf_writer.add_layer_norm_eps(config.layer_norm_epsilon) gguf_writer.add_file_type(ftype) print("gguf: get gpt2 tokenizer vocab") tokenizer = AutoTokenizer.from_pretrained(dir_model) reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} byte_encoder = tokenization_gpt2.bytes_to_unicode() byte_decoder = {v: k for k, v in byte_encoder.items()} tokens: list[bytearray] = [] for i in range(config.vocab_size): if i in reverse_vocab: try: text = bytearray([byte_decoder[c] for c in reverse_vocab[i]]) except KeyError: text = bytearray() for c in reverse_vocab[i]: if ord(c) < 256: # single byte character text.append(byte_decoder[c]) else: # multibyte special token character text.extend(c.encode('utf-8')) else: print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.") pad_token = f"[PAD{i}]".encode("utf8") text = bytearray(pad_token) tokens.append(text) gguf_writer.add_tokenizer_model("gpt2") gguf_writer.add_token_list(tokens) special_vocab = gguf.SpecialVocab(dir_model, load_merges=True) special_vocab.add_to_gguf(gguf_writer) print("gguf: get tensor metadata") model = GPTJForCausalLM.from_pretrained(dir_model, config=config, low_cpu_mem_usage=True) #print (model) tensor_map = gguf.get_tensor_name_map(ARCH, block_count) list_vars = model.state_dict() #print (list_vars) for name in list_vars.keys(): data = list_vars[name].squeeze().numpy() print("Processing variable:", name, "with shape:", data.shape) # we don't need these if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"): print(" Skipping variable:", name) continue n_dims = len(data.shape) # ftype == 0 -> float32, ftype == 1 -> float16 ftype_cur = 0 if ftype == 1 and name[-7:] == ".weight" and n_dims == 2: print(" Converting to float16") data = data.astype(np.float16) ftype_cur = 1 elif ftype == 1 or data.dtype != np.float32: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: print("Can not map tensor '" + name + "'") sys.exit() gguf_writer.add_tensor(new_name, data) print("gguf: write header") gguf_writer.write_header_to_file() print("gguf: write metadata") gguf_writer.write_kv_data_to_file() print("gguf: write tensors") gguf_writer.write_tensors_to_file() gguf_writer.close() print(f"gguf: model successfully exported to '{fname_out}'") print()