# Based on: https://github.com/KerfuffleV2/ggml-falcon/blob/feat-improve-falcon-convert-hf/examples/falcon/convert-hf-to-ggml.py # Convert Hugging Face fine-tuned bloom-like models to ggml format # # Usage: # # python3 convert_falcon_hf_to_ggml.py model_directory output_directory [use-f32] # # This script is similar to "convert-pt-to-ggml.py" # import io import os import sys import struct import json import code import torch import numpy as np import gc from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) if len(sys.argv) < 3: print("INFO: GGML V1 files produced are meant to be finalized through examples/falcon_quantize which will bring them to latest version and precision of choice"); print("Usage: python convert_falcon_hf_to_ggml.py model_directory output_directory [use-f32]") print(" model_directory: name of the directory and model you convert (it should be a subdirectory)") print(" output-directory: directory where the output file will be written") print(" use-f32: if present, use float32 instead of float16 (f32 is recommended)") sys.exit(1) # num_parts = int(sys.argv[1]) dir_model = sys.argv[1] # name and dir of model dir_out = sys.argv[2] # output directory # make sure the output directory exists os.makedirs(dir_out, exist_ok=True) # possible data types # ftype == 0 -> float32 # ftype == 1 -> float16 # # map from ftype to string ftype_str = ["f32", "f16"] ftype = 1 if len(sys.argv) > 3: ftype = 0 tokenizer = AutoTokenizer.from_pretrained(dir_model) # print(tokenizer) config = AutoConfig.from_pretrained(dir_model, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(dir_model, trust_remote_code=True, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True) hparams = config.to_dict() n_head = hparams["n_head"] n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1 head_dim = hparams["hidden_size"] // n_head print("* Loading model from: ", dir_model) fname_out = dir_out + f"/ggml-model-{dir_model.split('/')[-1]}-{ftype_str[ftype]}.bin" fout = open(fname_out, "wb") fout.write(struct.pack("i", 0x67676a74)) # magic: ggmf in hex (version 1) - possibly change to ggfc ? fout.write(struct.pack("i", 1)) # version fout.write(struct.pack("i", hparams["vocab_size"])) fout.write(struct.pack("i", hparams["hidden_size"])) fout.write(struct.pack("i", n_head)) fout.write(struct.pack("i", n_head_kv)) fout.write(struct.pack("i", hparams["n_layer"])) fout.write(struct.pack("i", 40 if "n_head_kv" in hparams else 7)) # obsolete field that breaks ggml compatibility - todo again remove one day fout.write(struct.pack("i", ftype)) reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()} byte_encoder = bytes_to_unicode() byte_decoder = {v:k for k, v in byte_encoder.items()} for i in range(hparams["vocab_size"]): text = bytearray([byte_decoder[c] for c in reverse_vocab[i]]) fout.write(struct.pack("i", len(text))) fout.write(text) fout.write(struct.pack("f", 0.0)) # falcon uses bpe on RefinedWeb - no probability scores used model = model.state_dict() for name in model.keys(): src = name # The original query_key_value tensor contains n_head_kv "kv groups", # each consisting of n_head/n_head_kv query weights followed by one key # and one value weight (shared by all query heads in the kv group). # This layout makes it a big pain to work with in GGML. # So we rearrange them here,, so that we have n_head query weights # followed by n_head_kv key weights followed by n_head_kv value weights, # in contiguous fashion. if "query_key_value" in src: qkv = model[src].view( n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head) q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head) k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head) v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head) model[src] = torch.cat((q,k,v)).reshape_as(model[src]) data = model[src].squeeze() n_dims = len(data.shape) # default type is fp32 ftype_cur = 1 if ftype == 1 and n_dims > 1 else 0 data = data.to(dtype = torch.float16 if ftype_cur == 1 else torch.float32).numpy() print(f' |', name, data.shape, '->', data.dtype) # header str = name.encode('utf-8') fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) for i in range(n_dims): fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) fout.write(str) # data data.tofile(fout) fout.close() print("Done. Output file: " + fname_out) print("")