#define BERT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE #include "bert_impl.h" #include "llmodel_shared.h" #include "ggml.h" #include #include #include #include #include #include #include #include #include #include #include #include #include //#define DEBUG_BERT namespace { const char *modelType_ = "Bert"; } typedef int32_t bert_vocab_id; // default hparams (all-MiniLM-L6-v2) struct bert_hparams { int32_t n_vocab = 30522; int32_t n_max_tokens = 512; int32_t n_embd = 256; int32_t n_intermediate = 1536; int32_t n_head = 12; int32_t n_layer = 6; }; struct bert_layer { // normalization struct ggml_tensor *ln_att_w; struct ggml_tensor *ln_att_b; struct ggml_tensor *ln_out_w; struct ggml_tensor *ln_out_b; // attention struct ggml_tensor *q_w; struct ggml_tensor *q_b; struct ggml_tensor *k_w; struct ggml_tensor *k_b; struct ggml_tensor *v_w; struct ggml_tensor *v_b; struct ggml_tensor *o_w; struct ggml_tensor *o_b; // ff struct ggml_tensor *ff_i_w; struct ggml_tensor *ff_i_b; struct ggml_tensor *ff_o_w; struct ggml_tensor *ff_o_b; }; struct bert_vocab { std::map token_to_id; std::map subword_token_to_id; std::map _id_to_token; std::map _id_to_subword_token; }; struct bert_model { bert_hparams hparams; // embeddings weights struct ggml_tensor *word_embeddings; struct ggml_tensor *token_type_embeddings; struct ggml_tensor *position_embeddings; struct ggml_tensor *ln_e_w; struct ggml_tensor *ln_e_b; std::vector layers; struct ggml_context *ctx; }; // Replacement for std::vector that doesn't require zero-initialization. struct bert_ctx { bert_model model; bert_vocab vocab; size_t mem_per_token; int64_t mem_per_input; int32_t max_batch_n; llm_buffer buf_compute; llm_buffer work_buf; }; int32_t bert_n_embd(bert_ctx * ctx) { return ctx->model.hparams.n_embd; } int32_t bert_n_max_tokens(bert_ctx * ctx) { return ctx->model.hparams.n_max_tokens; } const char* bert_vocab_id_to_token(bert_ctx * ctx, bert_vocab_id id) { bert_vocab & vocab = ctx->vocab; auto it = vocab._id_to_token.find(id); if (it != vocab._id_to_token.end()) { return it->second.c_str(); } it = vocab._id_to_subword_token.find(id); if (it != vocab._id_to_subword_token.end()) { return it->second.c_str(); } return "[UNK TOKEN from bert_vocab]"; } // // Tokenizing // static size_t utf8_len(char src) { const size_t lookup[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4}; uint8_t highbits = static_cast(src) >> 4; return lookup[highbits]; } std::string stripAccents(const std::string &inputString) { std::string resultString; std::map accentMap = {{"À", 'A'},{"Á", 'A'}, {"Â", 'A'},{"Ã", 'A'},{"Ä", 'A'},{"Å", 'A'},{"à", 'a'},{"á", 'a'}, {"â", 'a'},{"ã", 'a'},{"ä", 'a'},{"å", 'a'},{"È", 'E'},{"É", 'E'}, {"Ê", 'E'},{"Ë", 'E'},{"è", 'e'},{"é", 'e'},{"ê", 'e'},{"ë", 'e'}, {"Ì", 'I'},{"Í", 'I'},{"Î", 'I'},{"Ï", 'I'},{"ì", 'i'},{"í", 'i'}, {"î", 'i'},{"ï", 'i'},{"Ò", 'O'},{"Ó", 'O'},{"Ô", 'O'},{"Õ", 'O'}, {"Ö", 'O'},{"ò", 'o'},{"ó", 'o'},{"ô", 'o'},{"õ", 'o'},{"ö", 'o'}, {"Ù", 'U'},{"Ú", 'U'},{"Û", 'U'},{"Ü", 'U'},{"ù", 'u'},{"ú", 'u'}, {"û", 'u'},{"ü", 'u'},{"Ý", 'Y'},{"ý", 'y'},{"Ç", 'C'},{"ç", 'c'}, {"Ñ", 'N'},{"ñ", 'n'}, }; for (size_t i = 0; i < inputString.length();) { int len = utf8_len(inputString[i]); std::string curChar = inputString.substr(i, len); auto iter = accentMap.find(curChar); if (iter != accentMap.end()) { resultString += iter->second; } else { resultString += curChar; } i += len; } return resultString; } std::string bert_normalize_prompt(const std::string &text) { // TODO: handle chinese characters? https://github.com/huggingface/tokenizers/blob/ef5f50605ddf9f8caef1598c0e4853862b9707a7/tokenizers/src/normalizers/bert.rs#L98 std::string text2 = stripAccents(text); for (size_t i = 0; i < text2.size(); i += utf8_len(text2[i])) { char c = text2[i]; if (c >= 'A' && c <= 'Z') text2[i] = c - 'A' + 'a'; } return text2; } std::vector bert_tokenize( struct bert_ctx * ctx, const char * text) { const bert_vocab &vocab = ctx->vocab; std::string str = text; std::vector words; // first split the text into words { str = bert_normalize_prompt(str); std::string pat = R"([[:punct:]]|[[:alpha:]]+|[[:digit:]]+)"; std::regex re(pat); std::smatch m; while (std::regex_search(str, m, re)) { for (std::string x : m) { words.push_back(x); } str = m.suffix(); } } // find the longest tokens that form the words: std::vector tokens; int cls_tok_id = 101; tokens.push_back(cls_tok_id); for (const auto &word : words) { if (word.size() == 0) continue; int i = 0; int n = word.size(); auto *token_map = &vocab.token_to_id; while (i < n) { int j = n; while (j > i) { auto it = token_map->find(word.substr(i, j - i)); if (it != token_map->end()) { tokens.push_back(it->second); i = j; token_map = &vocab.subword_token_to_id; } --j; } if (j == i) { fprintf(stderr, "%s: unknown token '%s'\n", __func__, word.substr(i, 1).data()); token_map = &vocab.subword_token_to_id; ++i; } } } return tokens; } void bert_resize_ctx(bert_ctx * ctx, int32_t new_size) { int64_t buf_size_new = ctx->mem_per_input * new_size; // TODO: Max memory should be a param? Now just 1 GB int64_t GB = 1 << 30; #if defined(DEBUG_BERT) printf("%s: requested_buf_size %lldMB\n", __func__, buf_size_new / (1 << 20)); #endif if (buf_size_new > GB) { int32_t adjusted_new_size = GB / ctx->mem_per_input; if (adjusted_new_size < 1) adjusted_new_size = 1; #if defined(DEBUG_BERT) printf("%s: requested batch size %d, actual new batch size %d\n", __func__, new_size, adjusted_new_size); #endif new_size = adjusted_new_size; buf_size_new = ctx->mem_per_input * new_size; } if (new_size > ctx->max_batch_n) { ctx->buf_compute.resize(buf_size_new); ctx->max_batch_n = new_size; } } void bert_eval( struct bert_ctx *ctx, int32_t n_threads, const bert_vocab_id *raw_tokens, int32_t n_tokens, float *embeddings) { const bert_model& model = ctx->model; bool mem_req_mode = !embeddings; // batch_embeddings is nullptr for the initial memory requirements run if (!mem_req_mode && 1 > ctx->max_batch_n) bert_resize_ctx(ctx, 1); const int N = n_tokens; const auto &tokens = raw_tokens; const auto &hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_max_tokens = hparams.n_max_tokens; const int n_head = hparams.n_head; const int d_head = n_embd / n_head; std::vector result; if (N > n_max_tokens) { fprintf(stderr, "Too many tokens, maximum is %d\n", n_max_tokens); return; } auto & mem_per_token = ctx->mem_per_token; auto & buf_compute = ctx->buf_compute; struct ggml_init_params params = { .mem_size = buf_compute.size, .mem_buffer = buf_compute.addr, .no_alloc = false, }; struct ggml_context *ctx0 = ggml_init(params); struct ggml_cgraph gf = {}; // Embeddings. word_embeddings + token_type_embeddings + position_embeddings struct ggml_tensor *token_layer = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(token_layer->data, tokens, N * ggml_element_size(token_layer)); struct ggml_tensor *token_types = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); ggml_set_zero(token_types); struct ggml_tensor *positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); for (int i = 0; i < N; i++) { ggml_set_i32_1d(positions, i, i); } struct ggml_tensor *inpL = ggml_get_rows(ctx0, model.word_embeddings, token_layer); inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.token_type_embeddings, token_types), inpL); inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.position_embeddings, positions), inpL); // embd norm { inpL = ggml_norm(ctx0, inpL, 1e-5f); inpL = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.ln_e_w, inpL), inpL), ggml_repeat(ctx0, model.ln_e_b, inpL)); } // layers for (int il = 0; il < n_layer; il++) { struct ggml_tensor *cur = inpL; // self-attention { struct ggml_tensor *Qcur = cur; Qcur = ggml_reshape_3d(ctx0, ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].q_b, Qcur), ggml_mul_mat(ctx0, model.layers[il].q_w, Qcur)), d_head, n_head, N); struct ggml_tensor *Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); struct ggml_tensor *Kcur = cur; Kcur = ggml_reshape_3d(ctx0, ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].k_b, Kcur), ggml_mul_mat(ctx0, model.layers[il].k_w, Kcur)), d_head, n_head, N); struct ggml_tensor *K = ggml_permute(ctx0, Kcur, 0, 2, 1, 3); struct ggml_tensor *Vcur = cur; Vcur = ggml_reshape_3d(ctx0, ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].v_b, Vcur), ggml_mul_mat(ctx0, model.layers[il].v_w, Vcur)), d_head, n_head, N); struct ggml_tensor *V = ggml_permute(ctx0, Vcur, 0, 2, 1, 3); struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q); // KQ = soft_max(KQ / sqrt(head width)) KQ = ggml_soft_max(ctx0, ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt((float)d_head)))); V = ggml_cont(ctx0, ggml_transpose(ctx0, V)); struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V, KQ); KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); cur = ggml_cpy(ctx0, KQV, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); } // attention output cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].o_b, cur), ggml_mul_mat(ctx0, model.layers[il].o_w, cur)); // re-add the layer input cur = ggml_add(ctx0, cur, inpL); // attention norm { cur = ggml_norm(ctx0, cur, 1e-5f); cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_att_w, cur), cur), ggml_repeat(ctx0, model.layers[il].ln_att_b, cur)); } struct ggml_tensor *att_output = cur; // intermediate_output = self.intermediate(attention_output) cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].ff_i_b, cur), cur); cur = ggml_gelu(ctx0, cur); // layer_output = self.output(intermediate_output, attention_output) cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur); cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].ff_o_b, cur), cur); // attentions bypass the intermediate layer cur = ggml_add(ctx0, att_output, cur); // output norm { cur = ggml_norm(ctx0, cur, 1e-5f); cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_out_w, cur), cur), ggml_repeat(ctx0, model.layers[il].ln_out_b, cur)); } inpL = cur; } inpL = ggml_cont(ctx0, ggml_transpose(ctx0, inpL)); // pooler struct ggml_tensor *sum = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, N, 1); ggml_set_f32(sum, 1.0f / N); inpL = ggml_mul_mat(ctx0, inpL, sum); ggml_tensor *output = inpL; // run the computation ggml_build_forward_expand(&gf, output); //ggml_graph_compute_g4a() ggml_graph_compute_g4a(ctx->work_buf, &gf, n_threads); //ggml_graph_compute(ctx0, &gf); // float *dat = ggml_get_data_f32(output); // pretty_print_tensor(dat, output->ne, output->nb, output->n_dims - 1, ""); #ifdef GGML_PERF // print timing information per ggml operation (for debugging purposes) // requires GGML_PERF to be defined ggml_graph_print(&gf); #endif if (!mem_req_mode) { memcpy(embeddings, (float *)ggml_get_data(output), sizeof(float) * n_embd); } else { mem_per_token = ggml_used_mem(ctx0) / N; } // printf("used_mem = %zu KB \n", ggml_used_mem(ctx0) / 1024); // printf("mem_per_token = %zu KB \n", mem_per_token / 1024); ggml_free(ctx0); } // // Loading and setup // void bert_free(bert_ctx * ctx) { delete ctx; } struct bert_ctx * bert_load_from_file(const char *fname) { #if defined(DEBUG_BERT) printf("%s: loading model from '%s' - please wait ...\n", __func__, fname); #endif bert_ctx * new_bert = new bert_ctx; #if defined(GGML_USE_KOMPUTE) new_bert->buf_compute.force_cpu = true; new_bert->work_buf.force_cpu = true; #endif bert_model & model = new_bert->model; bert_vocab & vocab = new_bert->vocab; struct gguf_init_params params = { /*.no_alloc = */ false, /*.ctx = */ &model.ctx, }; gguf_context *ggufctx = gguf_init_from_file(fname, params); if (!ggufctx) { fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__); return nullptr; } printf("%s: gguf version = %d\n", __func__, gguf_get_version(ggufctx)); printf("%s: gguf alignment = %zu\n", __func__, gguf_get_alignment(ggufctx)); printf("%s: gguf data offset = %zu\n", __func__, gguf_get_data_offset(ggufctx)); // print some standard metadata { int keyidx; keyidx = gguf_find_key(ggufctx, "general.name"); if (keyidx != -1) { printf("%s: model name = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.description"); if (keyidx != -1) { printf("%s: model description = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.author"); if (keyidx != -1) { printf("%s: model author = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.license"); if (keyidx != -1) { printf("%s: model license = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.architecture"); if (keyidx != -1) { printf("%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.file_type"); if (keyidx != -1) { printf("%s: model file type = %" PRIu32 "\n", __func__, gguf_get_val_u32(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "gptneox.tensor_data_layout"); if (keyidx != -1) { printf("%s: model data layout = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.source.huggingface.repository"); if (keyidx != -1) { printf("%s: model source HF repo = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } } // check required metadata { // check model architecture kv int keyidx = gguf_find_key(ggufctx, "general.architecture"); if (keyidx == -1) { fprintf(stderr, "%s: gguf model architecture not found!\n", __func__); return nullptr; } if (strcmp(gguf_get_val_str(ggufctx, keyidx), "bert") != 0) { fprintf(stderr, "%s: model architecture not supported!\n", __func__); return nullptr; } } // load hparams { auto &hparams = model.hparams; bool ok = false; int keyidx; do { keyidx = gguf_find_key(ggufctx, "bert.context_length"); if (keyidx == -1) { break; } hparams.n_max_tokens = gguf_get_val_u32(ggufctx, keyidx); keyidx = gguf_find_key(ggufctx, "bert.embedding_length"); if (keyidx == -1) { break; } hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx); keyidx = gguf_find_key(ggufctx, "bert.feed_forward_length"); if (keyidx == -1) { break; } hparams.n_intermediate = gguf_get_val_u32(ggufctx, keyidx); keyidx = gguf_find_key(ggufctx, "bert.attention.head_count"); if (keyidx == -1) { break; } hparams.n_head = gguf_get_val_u32(ggufctx, keyidx); keyidx = gguf_find_key(ggufctx, "bert.block_count"); if (keyidx == -1) { break; } hparams.n_layer = gguf_get_val_u32(ggufctx, keyidx); ok = true; } while (false); if (!ok) { fprintf(stderr, "%s: required hparam missing!\n", __func__); return nullptr; } #if defined(DEBUG_BERT) printf("%s: n_max_tokens = %d\n", __func__, hparams.n_max_tokens); printf("%s: n_embd = %d\n", __func__, hparams.n_embd); printf("%s: n_intermediate = %d\n", __func__, hparams.n_intermediate); printf("%s: n_head = %d\n", __func__, hparams.n_head); printf("%s: n_layer = %d\n", __func__, hparams.n_layer); #endif } // load vocab { auto & hparams = model.hparams; int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model"); if (keyidx == -1) { fprintf(stderr, "%s: tokenizer model not found!\n", __func__); return nullptr; } if (strcmp(gguf_get_val_str(ggufctx, keyidx), "bert") != 0) { fprintf(stderr, "%s: tokenizer model not supported!\n", __func__); return nullptr; } int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens"); if (tokens_keyidx == -1) { fprintf(stderr, "%s: bert tokenizer vocab not found!\n", __func__); return nullptr; } hparams.n_vocab = gguf_get_arr_n(ggufctx, tokens_keyidx); printf("%s: bert tokenizer vocab = %d\n", __func__, int(hparams.n_vocab)); for (int i = 0; i < hparams.n_vocab; i++) { std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i); if (word[0] == '#' && word[1] == '#') { vocab.subword_token_to_id[word.substr(2)] = i; vocab._id_to_subword_token[i] = word; } if (vocab.token_to_id.count(word) == 0) { vocab.token_to_id[word] = i; vocab._id_to_token[i] = word; } } } auto &ctx = model.ctx; #if defined(DEBUG_BERT) printf("%s: ggml ctx size = %6.2f MB\n", __func__, ggml_get_mem_size(ctx) / (1024.0 * 1024.0)); #endif // prepare memory for the weights { const int n_layer = model.hparams.n_layer; model.layers.resize(n_layer); model.word_embeddings = ggml_get_tensor(ctx, "token_embd.weight"); model.token_type_embeddings = ggml_get_tensor(ctx, "token_types.weight"); model.position_embeddings = ggml_get_tensor(ctx, "position_embd.weight"); model.ln_e_w = ggml_get_tensor(ctx, "output_norm.weight"); model.ln_e_b = ggml_get_tensor(ctx, "output_norm.bias"); auto name = [](int i, std::string n) { static std::string key; key = "blk." + std::to_string(i) + "." + n; return key.c_str(); }; for (int i = 0; i < n_layer; ++i) { auto &layer = model.layers[i]; layer.ln_att_w = ggml_get_tensor(ctx, name(i, "attn_norm.weight")); layer.ln_att_b = ggml_get_tensor(ctx, name(i, "attn_norm.bias")); layer.ln_out_w = ggml_get_tensor(ctx, name(i, "ffn_norm.weight")); layer.ln_out_b = ggml_get_tensor(ctx, name(i, "ffn_norm.bias")); layer.q_w = ggml_get_tensor(ctx, name(i, "attn_q.weight")); layer.q_b = ggml_get_tensor(ctx, name(i, "attn_q.bias")); layer.k_w = ggml_get_tensor(ctx, name(i, "attn_k.weight")); layer.k_b = ggml_get_tensor(ctx, name(i, "attn_k.bias")); layer.v_w = ggml_get_tensor(ctx, name(i, "attn_v.weight")); layer.v_b = ggml_get_tensor(ctx, name(i, "attn_v.bias")); layer.o_w = ggml_get_tensor(ctx, name(i, "attn_output.weight")); layer.o_b = ggml_get_tensor(ctx, name(i, "attn_output.bias")); layer.ff_i_w = ggml_get_tensor(ctx, name(i, "ffn_up.weight")); layer.ff_i_b = ggml_get_tensor(ctx, name(i, "ffn_up.bias")); layer.ff_o_w = ggml_get_tensor(ctx, name(i, "ffn_down.weight")); layer.ff_o_b = ggml_get_tensor(ctx, name(i, "ffn_down.bias")); } } // Calculate space requirements for setting up context buffers later { bert_vocab_id tokens[] = {0, 1, 2, 3}; // TODO: We set the initial buffer size to 16MB and hope it's enough. Maybe there is a better way to do this? new_bert->buf_compute.resize(16 * 1024 * 1024); bert_eval(new_bert, 1, tokens, 4, nullptr); new_bert->max_batch_n = 0; // TODO: Max tokens should be a param? int32_t N = new_bert->model.hparams.n_max_tokens; new_bert->mem_per_input = 2.2 * (new_bert->mem_per_token * N); // add 10% to account for ggml object overhead } #if defined(DEBUG_BERT) printf("%s: mem_per_token %ld KB, mem_per_input %ld MB\n", __func__, new_bert->mem_per_token / (1 << 10), new_bert->mem_per_input / (1 << 20)); #endif return new_bert; } struct BertPrivate { const std::string modelPath; bool modelLoaded; bert_ctx *ctx = nullptr; int64_t n_threads = 0; }; Bert::Bert() : d_ptr(new BertPrivate) { d_ptr->modelLoaded = false; } Bert::~Bert() { bert_free(d_ptr->ctx); } bool Bert::loadModel(const std::string &modelPath) { d_ptr->ctx = bert_load_from_file(modelPath.c_str()); d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); d_ptr->modelLoaded = d_ptr->ctx != nullptr; fflush(stdout); return true; } bool Bert::isModelLoaded() const { return d_ptr->modelLoaded; } size_t Bert::requiredMem(const std::string &/*modelPath*/) { return 0; } size_t Bert::stateSize() const { return 0; } size_t Bert::saveState(uint8_t */*dest*/) const { return 0; } size_t Bert::restoreState(const uint8_t */*src*/) { return 0; } void Bert::setThreadCount(int32_t n_threads) { d_ptr->n_threads = n_threads; } int32_t Bert::threadCount() const { return d_ptr->n_threads; } std::vector Bert::embedding(const std::string &text) { const int overlap = 32; const LLModel::Token clsToken = 101; const size_t contextLength = bert_n_max_tokens(d_ptr->ctx); typedef std::vector TokenString; TokenString tokens = ::bert_tokenize(d_ptr->ctx, text.c_str()); #if defined(DEBUG_BERT) std::cerr << "embedding: " << tokens.size() << " contextLength " << contextLength << "\n"; #endif std::vector embeddingsSum(bert_n_embd(d_ptr->ctx), 0); int embeddingsSumTotal = 0; size_t start_pos = 0; bool isFirstChunk = true; while (start_pos < tokens.size()) { TokenString chunk; if (!isFirstChunk) chunk.push_back(clsToken); const size_t l = isFirstChunk ? contextLength : contextLength - 1; if (tokens.size() - start_pos > l) { chunk.insert(chunk.end(), tokens.begin() + start_pos, tokens.begin() + start_pos + l); start_pos = start_pos + contextLength - overlap; } else { chunk.insert(chunk.end(), tokens.begin() + start_pos, tokens.end()); start_pos = tokens.size(); } #if defined(DEBUG_BERT) std::cerr << "chunk length: " << chunk.size() << " embeddingsSumTotal " << embeddingsSumTotal << " contextLength " << contextLength << " start_pos " << start_pos << "\n"; #endif embeddingsSumTotal++; std::vector embeddings(bert_n_embd(d_ptr->ctx)); bert_eval(d_ptr->ctx, d_ptr->n_threads, chunk.data(), chunk.size(), embeddings.data()); std::transform(embeddingsSum.begin(), embeddingsSum.end(), embeddings.begin(), embeddingsSum.begin(), std::plus()); isFirstChunk = false; } std::transform(embeddingsSum.begin(), embeddingsSum.end(), embeddingsSum.begin(), [embeddingsSumTotal](float num){ return num / embeddingsSumTotal; }); double magnitude = std::sqrt(std::inner_product(embeddingsSum.begin(), embeddingsSum.end(), embeddingsSum.begin(), 0.0)); for (auto &value : embeddingsSum) value /= magnitude; std::vector finalEmbeddings(embeddingsSum.begin(), embeddingsSum.end()); return finalEmbeddings; } std::vector Bert::tokenize(PromptContext &, const std::string &str) const { return ::bert_tokenize(d_ptr->ctx, str.c_str()); } LLModel::Token Bert::sampleToken(PromptContext &/*promptCtx*/) const { return 999 /*!*/; } std::string Bert::tokenToString(Token id) const { return bert_vocab_id_to_token(d_ptr->ctx, id); } bool Bert::evalTokens(PromptContext &ctx, const std::vector &tokens) const { std::vector embeddings(bert_n_embd(d_ptr->ctx)); int32_t cls = 101; const bool useCLS = tokens.front() != cls; if (useCLS) { std::vector myTokens; myTokens.push_back(cls); myTokens.insert(myTokens.end(), tokens.begin(), tokens.end()); bert_eval(d_ptr->ctx, d_ptr->n_threads, myTokens.data(), myTokens.size(), embeddings.data()); } else bert_eval(d_ptr->ctx, d_ptr->n_threads, tokens.data(), tokens.size(), embeddings.data()); ctx.n_past = 0; // bert does not store any context return true; } int32_t Bert::contextLength() const { return bert_n_max_tokens(d_ptr->ctx); } const std::vector &Bert::endTokens() const { static const std::vector out = { 102 /*sep*/}; return out; } std::string get_arch_name(gguf_context *ctx_gguf) { std::string arch_name; const int kid = gguf_find_key(ctx_gguf, "general.architecture"); enum gguf_type ktype = gguf_get_kv_type(ctx_gguf, kid); if (ktype != GGUF_TYPE_STRING) { throw std::runtime_error("ERROR: Can't get general architecture from gguf file."); } return gguf_get_val_str(ctx_gguf, kid); } #if defined(_WIN32) #define DLL_EXPORT __declspec(dllexport) #else #define DLL_EXPORT __attribute__ ((visibility ("default"))) #endif extern "C" { DLL_EXPORT bool is_g4a_backend_model_implementation() { return true; } DLL_EXPORT const char *get_model_type() { return modelType_; } DLL_EXPORT const char *get_build_variant() { return GGML_BUILD_VARIANT; } DLL_EXPORT bool magic_match(const char * fname) { struct ggml_context * ctx_meta = NULL; struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &ctx_meta, }; gguf_context *ctx_gguf = gguf_init_from_file(fname, params); if (!ctx_gguf) return false; bool isValid = gguf_get_version(ctx_gguf) <= 3; isValid = isValid && get_arch_name(ctx_gguf) == "bert"; gguf_free(ctx_gguf); return isValid; } DLL_EXPORT LLModel *construct() { return new Bert; } }