#define REPLIT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE #include "replit_impl.h" #include "utils.h" #include "llmodel_shared.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(_WIN32) && defined(_MSC_VER) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX #define NOMINMAX #endif #include #include #include #else #include #endif #include #include #include #include #include #include #ifdef GGML_USE_METAL #include #endif /** IMPORTANT: This model backend and convert script were developed for the original Huggingface Replit model (hugginface commit hash: 9eceafb041eb8abd565dabfbfadd328869140011) */ using piece_t = std::pair; using piece_map_t = std::unordered_map; namespace { const char *modelType_ = "Replit"; const std::string ws_symbol = "\342\226\201"; } struct replit_tokenizer { gpt_vocab raw_vocab; piece_map_t piece_map; std::vector vocab; }; std::pair, float> encode_word(const std::string & word, const piece_map_t & model) { std::vector best_segmentations_starts(word.length() + 1, -1); best_segmentations_starts[0] = 0; std::vector best_segmentations_scores(word.length() + 1, -std::numeric_limits::infinity()); best_segmentations_scores[0] = 1.0; for (size_t start_idx = 0; start_idx < word.length(); ++start_idx) { float best_score_at_start = best_segmentations_scores[start_idx]; for (size_t end_idx = start_idx + 1; end_idx <= word.length(); ++end_idx) { std::string token = word.substr(start_idx, end_idx - start_idx); if (model.count(token) && best_score_at_start != -std::numeric_limits::infinity()) { float token_score = model.at(token).second; float score = token_score + best_score_at_start; if (best_segmentations_scores[end_idx] == -std::numeric_limits::infinity() || best_segmentations_scores[end_idx] > score) { best_segmentations_starts[end_idx] = start_idx; best_segmentations_scores[end_idx] = score; } } } } if (best_segmentations_scores.back() == -std::numeric_limits::infinity()) { return std::make_pair(std::vector{0}, 0.0f); } float score = best_segmentations_scores.back(); int start = best_segmentations_starts.back(); int end = word.length(); std::vector tokens; while (start != 0) { const auto token_id = model.at(word.substr(start, end - start)).first; tokens.insert(tokens.begin(), token_id); int next_start = best_segmentations_starts[start]; end = start; start = next_start; } const auto token_id = model.at(word.substr(start, end - start)).first; tokens.insert(tokens.begin(), token_id); return std::make_pair(tokens, score); } bool replit_tokenizer_load(replit_tokenizer & tokenizer, std::istream & fin, int max_vocab_size) { std::string word; std::vector buf(128); for (LLModel::Token i = 0; i < max_vocab_size; i++) { uint32_t len; fin.read((char *)&len, sizeof(len)); buf.resize(len); fin.read((char *) buf.data(), len); word.assign(buf.data(), len); float score; fin.read((char *)&score, sizeof(score)); tokenizer.piece_map[word] = std::make_pair(i, -score); tokenizer.raw_vocab.id_to_token[i] = word; tokenizer.raw_vocab.token_to_id[word] = i; } return true; } std::string replace_all(const std::string & str, // where to work const std::string & find, // substitute 'find' const std::string & replace // by 'replace' ) { std::string result; size_t find_len = find.size(); size_t pos, from = 0; while (std::string::npos != (pos = str.find(find, from))) { result.append(str, from, pos - from); result.append(replace); from = pos + find_len; } result.append(str, from, std::string::npos); return result; } std::vector replit_tokenizer_tokenize(replit_tokenizer & tokenizer, const std::string & text) { std::vector tokens; auto normalized_text = replace_all(text, " ", ws_symbol); auto tokenized = encode_word(normalized_text, tokenizer.piece_map); return tokenized.first; } std::string replit_tokenizer_detokenize(replit_tokenizer & tokenizer, const std::vector & tokens) { std::string text; for (auto token : tokens) { text += tokenizer.raw_vocab.id_to_token[token]; } return replace_all(text, ws_symbol, " "); } // no defaults for now struct mpt_hparams { int32_t n_vocab = 0; int32_t n_ctx = 0; //d_model int32_t n_embd = 0; //max_seq_len int32_t n_head = 0; // n_heads int32_t n_layer = 0; //n_layers int32_t ftype = 0; }; struct replit_layer { // pre normalization struct ggml_tensor * ln_1_weight; // attention struct ggml_tensor * c_attn_wqkv_weight; struct ggml_tensor * c_attn_out_proj_weight; // post normalization struct ggml_tensor * ln_2_weight; // ff struct ggml_tensor * c_mlp_mlp_up_weight; struct ggml_tensor * c_mlp_mlp_down_weight; }; struct replit_model { mpt_hparams hparams; struct ggml_tensor * wte_weight; // position embedding struct ggml_tensor * ln_f_weight; // language model head std::vector layers; // key + value memory struct llm_kv_cache kv_self; struct ggml_context * ctx; llm_buffer eval_buf; llm_buffer scr0_buf; llm_buffer scr1_buf; #ifdef GGML_USE_METAL struct ggml_metal_context * ctx_metal; #endif std::map tensors; }; static bool kv_cache_init( const struct mpt_hparams & hparams, struct llm_kv_cache & cache, ggml_type wtype, int n_ctx) { const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int64_t n_mem = (int64_t)n_layer*n_ctx; const int64_t n_elements = n_embd*n_mem; cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2_MiB); struct ggml_init_params params; params.mem_size = cache.buf.size; params.mem_buffer = cache.buf.addr; params.no_alloc = false; cache.ctx = ggml_init(params); if (!cache.ctx) { fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); return false; } cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); return true; } // load the model's weights from a stream bool replit_model_load(const std::string & fname, std::istream &fin, replit_model & model, replit_tokenizer & vocab, size_t *mem_req) { printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); if (mem_req != nullptr) { *mem_req = 0; } // verify magic { uint32_t magic; fin.read((char *)&magic, sizeof(magic)); if (magic != 0x7265706c) { fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); return false; } } // load hparams { auto & hparams = model.hparams; fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); fin.read((char *) &hparams.n_head, sizeof(hparams.n_head)); fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); fin.read((char *) &hparams.ftype, sizeof(hparams.ftype)); const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); printf("%s: n_embd = %d\n", __func__, hparams.n_embd); printf("%s: n_head = %d\n", __func__, hparams.n_head); printf("%s: n_layer = %d\n", __func__, hparams.n_layer); printf("%s: ftype = %d\n", __func__, hparams.ftype); printf("%s: qntvr = %d\n", __func__, qntvr); hparams.ftype %= GGML_QNT_VERSION_FACTOR; } // load vocab replit_tokenizer_load(vocab, fin, model.hparams.n_vocab); // for the big tensors, we have the option to store the data in 16-bit // floats or quantized in order to save memory and also to speed up the // computation ggml_type wtype = GGML_TYPE_COUNT; switch (model.hparams.ftype) { case 0: wtype = GGML_TYPE_F32; break; case 1: wtype = GGML_TYPE_F16; break; case 2: wtype = GGML_TYPE_Q4_0; break; case 3: wtype = GGML_TYPE_Q4_1; break; default: { fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n", __func__, fname.c_str(), model.hparams.ftype); return false; } } auto & ctx = model.ctx; size_t ctx_size = 0; { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_vocab = hparams.n_vocab; ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // wte_weight ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); // ln_f_weight ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_1_weight ctx_size += n_layer * (3 * n_embd * n_embd * ggml_type_sizef(wtype)); // attn_Wqkv_weight ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // attn_out_proj_weight ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_2_weight ctx_size += n_layer * (4 * n_embd * n_embd * ggml_type_sizef(wtype)); // mlp_mlp_up_weight ctx_size += n_layer * (n_embd * n_embd * 4 * ggml_type_sizef(wtype)); // mlp_mlp_down_weight ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_k ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_v ctx_size += (1 + 6 * n_layer) * 512; // object overhead printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0)); } if (mem_req != nullptr) { *mem_req += ctx_size; const int n_embd = model.hparams.n_embd; const int n_layer = model.hparams.n_layer; const int64_t n_mem = (int64_t)n_layer*model.hparams.n_ctx; const int64_t n_elements = n_embd*n_mem; *mem_req += (2u*n_elements*ggml_type_size(wtype) + 2_MiB); return false; } // create the ggml context { struct ggml_init_params params = { .mem_size = ctx_size, .mem_buffer = NULL, .no_alloc = false, }; model.ctx = ggml_init(params); if (!model.ctx) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return false; } } // prepare memory for the weights { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_vocab = hparams.n_vocab; model.layers.resize(n_layer); model.wte_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); model.ln_f_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // map by name model.tensors["transformer.wte.weight"] = model.wte_weight; model.tensors["transformer.ln_f.weight"] = model.ln_f_weight; for (int i = 0; i < n_layer; ++i) { auto & layer = model.layers[i]; layer.ln_1_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.c_attn_wqkv_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd); layer.c_attn_out_proj_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.ln_2_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.c_mlp_mlp_up_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd); layer.c_mlp_mlp_down_weight = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd); // map by name model.tensors["transformer.blocks." + std::to_string(i) + ".ln_1.weight"] = layer.ln_1_weight; model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.c_attn_wqkv_weight; model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_out_proj_weight; model.tensors["transformer.blocks." + std::to_string(i) + ".ln_2.weight"] = layer.ln_2_weight; model.tensors["transformer.blocks." + std::to_string(i) + ".mlp.mlp_up.weight"] = layer.c_mlp_mlp_up_weight; model.tensors["transformer.blocks." + std::to_string(i) + ".mlp.mlp_down.weight"] = layer.c_mlp_mlp_down_weight; } } // key + value memory { const auto & hparams = model.hparams; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int64_t n_mem = n_layer * n_ctx; if (!kv_cache_init(hparams, model.kv_self, GGML_TYPE_F16, model.hparams.n_ctx)) { fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__); ggml_free(ctx); return false; } const size_t memory_size = ggml_nbytes(model.kv_self.k) + ggml_nbytes(model.kv_self.v); printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size / 1024.0 / 1024.0, n_mem); } // load weights { int n_tensors = 0; size_t total_size = 0; printf("%s: ", __func__); while (true) { int32_t n_dims; int32_t length; int32_t ttype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ttype), sizeof(ttype)); if (fin.eof()) { break; } int32_t nelements = 1; int32_t ne[2] = {1, 1}; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); fin.read(&name[0], length); if (model.tensors.find(name.data()) == model.tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); return false; } auto tensor = model.tensors[name.data()]; if (ggml_nelements(tensor) != nelements) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); return false; } if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%5d, " "%5d], expected [%5d, %5d]\n", __func__, name.data(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]); return false; } // for debugging if (0) { printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor)); } const size_t bpe = ggml_type_size(ggml_type(ttype)); if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, " "expected %zu\n", __func__, name.data(), ggml_nbytes(tensor), nelements * bpe); return false; } fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); total_size += ggml_nbytes(tensor); if (++n_tensors % 8 == 0) { printf("."); fflush(stdout); } } printf(" done\n"); printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size / 1024.0 / 1024.0, n_tensors); } model.eval_buf.resize(256u * 1024 * 1024); model.scr0_buf.resize(256u * 1024 * 1024); model.scr1_buf.resize(256u * 1024 * 1024); #ifdef GGML_USE_METAL model.ctx_metal = ggml_metal_init(); void* data_ptr = ggml_get_mem_buffer(model.ctx); size_t data_size = ggml_get_mem_size(model.ctx); const size_t max_size = ggml_get_max_tensor_size(model.ctx); #define GGML_CHECK_BUF(result) if (!(result)) { \ std::cerr << __func__ << ": failed to add buffer" << std::endl; \ ggml_free(model.ctx); \ return false; \ } GGML_CHECK_BUF(ggml_metal_add_buffer(model.ctx_metal, "data", data_ptr, data_size, max_size)); GGML_CHECK_BUF(ggml_metal_add_buffer(model.ctx_metal, "kv", ggml_get_mem_buffer(model.kv_self.ctx), ggml_get_mem_size(model.kv_self.ctx), 0)); GGML_CHECK_BUF(ggml_metal_add_buffer(model.ctx_metal, "eval", model.eval_buf.addr, model.eval_buf.size, 0)); GGML_CHECK_BUF(ggml_metal_add_buffer(model.ctx_metal, "scr0", model.scr0_buf.addr, model.scr0_buf.size, 0)); GGML_CHECK_BUF(ggml_metal_add_buffer(model.ctx_metal, "scr1", model.scr1_buf.addr, model.scr1_buf.size, 0)); #endif return true; } // load the model's weights from a file path bool replit_model_load(const std::string & fname, replit_model & model, replit_tokenizer & vocab) { auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); return false; } bool loaded = replit_model_load(fname, fin, model, vocab, nullptr); fin.close(); return loaded; } // evaluate the transformer // // - model: the model // - n_threads: number of threads to use // - n_past: the context size so far // - embd_inp: the embeddings of the tokens in the context // - embd_w: the predicted logits for the next token // bool replit_eval(const replit_model & model, const int n_threads, const int n_past, const std::vector & embd_inp, std::vector & embd_w, size_t & mem_per_token) { const int N = embd_inp.size(); const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_head = hparams.n_head; const int n_vocab = hparams.n_vocab; struct ggml_init_params eval_ctx_params = { .mem_size = model.eval_buf.size, .mem_buffer = model.eval_buf.addr, .no_alloc = false, }; struct ggml_context * ctx0 = ggml_init(eval_ctx_params); struct ggml_cgraph gf = {.n_threads = n_threads}; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd)); struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte_weight, embd); for (int il = 0; il < n_layer; ++il) { ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, }); struct ggml_tensor * cur; // a = self.ln_1(x) { cur = ggml_norm(ctx0, inpL); cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_1_weight, cur), cur); } // self-attention // b, _, past_key_value = self.attn(a, past_key_value=past_key_value, // attn_bias=attn_bias, attention_mask=attention_mask, // is_causal=is_causal) { // compute QKV { cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_wqkv_weight, cur); } struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd); struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd); struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd); // store key and value to memory { struct ggml_tensor * k = ggml_view_1d(ctx0, model.kv_self.k, N * n_embd, (ggml_element_size(model.kv_self.k) * n_embd) * (il * n_ctx + n_past)); struct ggml_tensor * v = ggml_view_1d(ctx0, model.kv_self.v, N * n_embd, (ggml_element_size(model.kv_self.v) * n_embd) * (il * n_ctx + n_past)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); } // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, // 2, 1, 3) [64, N, 12] struct ggml_tensor * Q = ggml_permute( ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd / n_head, n_head, N)), 0, 2, 1, 3); // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, // 3) [64, n_past + N, 12] struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.kv_self.k, (n_past + N) * n_embd, il * n_ctx * ggml_element_size(model.kv_self.v) * n_embd), n_embd / n_head, n_head, n_past + N), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head))); // Alibi struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, n_past, n_head, 8.0f); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, // 2, 0, 3).contiguous() [n_past + N, 64, 12] struct ggml_tensor * V_trans = ggml_cpy( ctx0, ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.kv_self.v, (n_past + N) * n_embd, il * n_ctx * ggml_element_size(model.kv_self.v) * n_embd), n_embd / n_head, n_head, n_past + N), 1, 2, 0, 3), ggml_new_tensor_3d(ctx0, model.kv_self.v->type, n_past + N, n_embd / n_head, n_head)); // KQV = transpose(V) * KQ_soft_max struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection { cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur); } } ggml_set_scratch(ctx0, {0, model.scr1_buf.size, model.scr1_buf.addr, }); inpL = ggml_add(ctx0, inpL, cur); // m = self.ln_2(x) { cur = ggml_norm(ctx0, inpL); cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ln_2_weight, cur), cur); } // n = self.mlp(m) { cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_mlp_up_weight, cur); // GELU activation cur = ggml_gelu(ctx0, cur); // projection // cur = proj_w*cur + proj_b cur = ggml_mul_mat(ctx0, model.layers[il].c_mlp_mlp_down_weight, cur); } // x = x + n inpL = ggml_add(ctx0, inpL, cur); } ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, }); // norm { inpL = ggml_norm(ctx0, inpL); // inpL = ln_f_g*inpL inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.ln_f_weight, inpL), inpL); } ggml_set_scratch(ctx0, {0, 0, nullptr, }); // output embedding weight tied to input embedding inpL = ggml_mul_mat(ctx0, model.wte_weight, inpL); // logits -> probs // inpL = ggml_soft_max(ctx0, inpL); // run the computation ggml_build_forward_expand(&gf, inpL); #ifdef GGML_USE_METAL if (N == 1) { // llama.cpp doesn't use metal for batch/prompt processing presently // pending changes to the metal matmul kernel - only use it for generation (N=1) ggml_metal_graph_compute(model.ctx_metal, &gf); ggml_metal_get_tensor(model.ctx_metal, inpL); } else { // We need to sync the GPU KV cache with the CPU KV cache ggml_metal_get_tensor(model.ctx_metal, model.kv_self.k); ggml_metal_get_tensor(model.ctx_metal, model.kv_self.v); ggml_graph_compute(ctx0, &gf); } #else ggml_graph_compute(ctx0, &gf); #endif // std::cout << "Qcur" << std::endl; // print_tensor(Qcur); // if (n_past%100 == 0) { // ggml_graph_print(&gf); // ggml_graph_dump_dot(&gf, NULL, "replit-model.dot"); // } // return result for just the last token embd_w.resize(n_vocab); memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab); if (mem_per_token == 0) { mem_per_token = ggml_used_mem(ctx0) / N; } // printf("used_mem = %zu\n", ggml_used_mem(ctx0)); ggml_free(ctx0); return true; } #define REPLIT_MAX_RNG_STATE 64*1024 size_t replit_get_state_size(const replit_model &model) { // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state. // for reference, std::mt19937(1337) serializes to 6701 bytes. const size_t s_rng_size = sizeof(size_t); const size_t s_rng = REPLIT_MAX_RNG_STATE; const size_t s_kv_size = sizeof(size_t); const size_t s_kv_ntok = sizeof(int); const size_t s_kv = model.kv_self.buf.size; const size_t s_total = ( + s_rng_size + s_rng + s_kv_size + s_kv_ntok + s_kv ); fflush(stdout); return s_total; } size_t replit_copy_state_data(const replit_model &model, const std::mt19937 &rng, uint8_t *dest) { uint8_t * out = dest; fflush(stdout); // copy rng { std::stringstream rng_ss; rng_ss << rng; const size_t rng_size = rng_ss.str().size(); char rng_buf[REPLIT_MAX_RNG_STATE]; memset(&rng_buf[0], 0, REPLIT_MAX_RNG_STATE); memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size()); memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size); memcpy(out, &rng_buf[0], REPLIT_MAX_RNG_STATE); out += REPLIT_MAX_RNG_STATE; } // copy kv cache { const size_t kv_size = model.kv_self.buf.size; const int kv_ntok = model.kv_self.n; memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size); memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok); if (kv_size) { memcpy(out, model.kv_self.buf.addr, kv_size); out += kv_size; } } const size_t written = out - dest; const size_t expected [[maybe_unused]] = replit_get_state_size(model); assert(written == expected); fflush(stdout); return written; } size_t replit_set_state_data(replit_model *model, std::mt19937 *rng, const uint8_t *src) { const uint8_t * in = src; // set rng { size_t rng_size; char rng_buf[REPLIT_MAX_RNG_STATE]; memcpy(&rng_size, in, sizeof(rng_size)); in += sizeof(rng_size); memcpy(&rng_buf[0], in, REPLIT_MAX_RNG_STATE); in += REPLIT_MAX_RNG_STATE; std::stringstream rng_ss; rng_ss.str(std::string(&rng_buf[0], rng_size)); rng_ss >> *rng; assert(rng_ss.fail() == false); } // set kv cache { size_t kv_size; int kv_ntok; memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size); memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok); if (kv_size) { assert(model->kv_self.buf.size == kv_size); void * k_data = model->kv_self.k->data; // remember data pointers void * v_data = model->kv_self.v->data; // because their value is stored in buf and overwritten by memcpy memcpy(model->kv_self.buf.addr, in, kv_size); in += kv_size; model->kv_self.k->data = k_data; // restore correct data pointers model->kv_self.v->data = v_data; } model->kv_self.n = kv_ntok; } const size_t nread = in - src; const size_t expected [[maybe_unused]] = replit_get_state_size(*model); assert(nread == expected); fflush(stdout); return nread; } struct ReplitPrivate { const std::string modelPath; bool modelLoaded; replit_tokenizer vocab; replit_model *model = nullptr; int64_t n_threads = 0; size_t mem_per_token = 0; std::mt19937 rng; bool has_end_of_text = false; }; Replit::Replit() : d_ptr(new ReplitPrivate) { d_ptr->model = new replit_model; d_ptr->model->ctx = nullptr; d_ptr->modelLoaded = false; } size_t Replit::requiredMem(const std::string &modelPath) { replit_model dummy_model; replit_tokenizer dummy_vocab; size_t mem_req; auto fin = std::ifstream(modelPath, std::ios::binary); replit_model_load(modelPath, fin, dummy_model, dummy_vocab, &mem_req); return mem_req; } bool Replit::loadModel(const std::string &modelPath) { std::mt19937 rng(time(NULL)); d_ptr->rng = rng; auto fin = std::ifstream(modelPath, std::ios::binary); // load the model if (!replit_model_load(modelPath, fin, *d_ptr->model, d_ptr->vocab, nullptr)) { std::cerr << "Replit ERROR: failed to load model from " << modelPath; return false; } d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); d_ptr->modelLoaded = true; d_ptr->has_end_of_text = d_ptr->vocab.raw_vocab.token_to_id.find("<|endoftext|>") != d_ptr->vocab.raw_vocab.token_to_id.end(); fflush(stdout); return true; } void Replit::setThreadCount(int32_t n_threads) { d_ptr->n_threads = n_threads; } int32_t Replit::threadCount() const { return d_ptr->n_threads; } Replit::~Replit() { if(d_ptr->model->ctx) { ggml_free(d_ptr->model->ctx); d_ptr->model->ctx = nullptr; } delete d_ptr->model; } bool Replit::isModelLoaded() const { return d_ptr->modelLoaded; } size_t Replit::stateSize() const { return replit_get_state_size(*d_ptr->model); } size_t Replit::saveState(uint8_t *dest) const { return replit_copy_state_data(*d_ptr->model, d_ptr->rng, dest); } size_t Replit::restoreState(const uint8_t *src) { return replit_set_state_data(d_ptr->model, &d_ptr->rng, src); } std::vector Replit::tokenize(PromptContext &, const std::string &str) const { return replit_tokenizer_tokenize(d_ptr->vocab, str); } std::string Replit::tokenToString(LLModel::Token id) const { return replit_tokenizer_detokenize(d_ptr->vocab, {id}); } LLModel::Token Replit::sampleToken(PromptContext &promptCtx) const { const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size()); return gpt_sample_top_k_top_p(d_ptr->model->hparams.n_vocab, promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks, n_prev_toks, promptCtx.logits, promptCtx.top_k, promptCtx.top_p, promptCtx.temp, promptCtx.repeat_penalty, d_ptr->rng); } bool Replit::evalTokens(PromptContext &ctx, const std::vector &tokens) const { return replit_eval(*d_ptr->model, d_ptr->n_threads, ctx.n_past, tokens, ctx.logits, d_ptr->mem_per_token); } int32_t Replit::contextLength() const { return d_ptr->model->hparams.n_ctx; } const std::vector &Replit::endTokens() const { static const std::vector fres = {0, d_ptr->vocab.raw_vocab.token_to_id["<|endoftext|>"]}; return fres; } #if defined(_WIN32) #define DLL_EXPORT __declspec(dllexport) #else #define DLL_EXPORT __attribute__ ((visibility ("default"))) #endif extern "C" { DLL_EXPORT bool is_g4a_backend_model_implementation() { return true; } DLL_EXPORT const char *get_model_type() { return modelType_; } DLL_EXPORT const char *get_build_variant() { return GGML_BUILD_VARIANT; } DLL_EXPORT bool magic_match(std::istream& f) { uint32_t magic = 0; f.read(reinterpret_cast(&magic), sizeof(magic)); if (magic != 0x7265706c) return false; #ifdef GGML_USE_METAL off_t offset = sizeof(uint32_t) * 5; // n_vocab, n_ctx, n_embd, n_head, n_layer f.seekg(offset, std::ios_base::cur); uint32_t ftype; f.read(reinterpret_cast(&ftype), sizeof(ftype)); // ftype const int32_t qntvr = ftype / GGML_QNT_VERSION_FACTOR; ftype %= GGML_QNT_VERSION_FACTOR; switch (ftype) { case 1: return true; // GGML_TYPE_F16 case 2: // GGML_TYPE_Q4_0 if (qntvr != GGML_QNT_VERSION) { std::cerr << "replit: not using metal (unsupported qnt ver)" << std::endl; return false; } return true; default: return false; } #else return true; #endif } DLL_EXPORT LLModel *construct() { return new Replit; } }