## Training GPT4All-J ### Technical Reports
:green_book: Technical Report 3: GPT4All Snoozy and Groovy
### GPT4All-J Training Data - We are releasing the curated training data for anyone to replicate GPT4All-J here: [GPT4All-J Training Data](https://huggingface.co/datasets/nomic-ai/gpt4all-j-prompt-generations) - [Atlas Map of Prompts](https://atlas.nomic.ai/map/gpt4all-j-prompts-curated) - [Atlas Map of Responses](https://atlas.nomic.ai/map/gpt4all-j-response-curated) We have released updated versions of our `GPT4All-J` model and training data. - `v1.0`: The original model trained on the v1.0 dataset - `v1.1-breezy`: Trained on a filtered dataset where we removed all instances of AI language model - `v1.2-jazzy`: Trained on a filtered dataset where we also removed instances like I'm sorry, I can't answer... and AI language model The [models](https://huggingface.co/nomic-ai/gpt4all-j) and [data](https://huggingface.co/datasets/nomic-ai/gpt4all-j-prompt-generations) versions can be specified by passing a `revision` argument. For example, to load the `v1.2-jazzy` model and dataset, run: ```python from datasets import load_dataset from transformers import AutoModelForCausalLM dataset = load_dataset("nomic-ai/gpt4all-j-prompt-generations", revision="v1.2-jazzy") model = AutoModelForCausalLM.from_pretrained("nomic-ai/gpt4all-j", revision="v1.2-jazzy") ``` ### GPT4All-J Training Instructions ```bash accelerate launch --dynamo_backend=inductor --num_processes=8 --num_machines=1 --machine_rank=0 --deepspeed_multinode_launcher standard --mixed_precision=bf16 --use_deepspeed --deepspeed_config_file=configs/deepspeed/ds_config_gptj.json train.py --config configs/train/finetune_gptj.yaml ```