#define MPT_H_I_KNOW_WHAT_I_AM_DOING_WHEN_INCLUDING_THIS_FILE #include "mpt_impl.h" #include "utils.h" #include "llmodel_shared.h" #include #include #include #include #include #include #include #include #include #include #include #if defined(_WIN32) && defined(_MSC_VER) #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX #define NOMINMAX #endif #include #include #include #else #include #endif #include #include #include #include #include namespace { const char *modelType_ = "MPT"; } // default hparams (MPT 7B) struct mpt_hparams { int32_t n_vocab = 50432; int32_t n_ctx = 2048; int32_t n_embd = 4096; int32_t n_head = 32; int32_t n_layer = 32; float alibi_bias_max = 8; float clip_qkv = 0; float norm_eps = 1e-5; int32_t expand = 4; }; struct mpt_layer { // normalization struct ggml_tensor * norm_1_w; struct ggml_tensor * norm_2_w; // attention struct ggml_tensor * attn_Wqkv_w; struct ggml_tensor * attn_out_proj_w; // ff struct ggml_tensor * ffn_up_proj_w; struct ggml_tensor * ffn_down_proj_w; }; struct mpt_model { mpt_hparams hparams; // normalization struct ggml_tensor * norm_f_w; struct ggml_tensor * wte; // position embedding // mpt does weight tying std::vector layers; struct llm_kv_cache kv_self; struct ggml_context * ctx; llm_buffer eval_buf; llm_buffer scr0_buf; llm_buffer scr1_buf; ~mpt_model() { if (ctx) { ggml_free(ctx); } } }; enum mpt_token_type { MPT_TOKEN_TYPE_NORMAL = 1, MPT_TOKEN_TYPE_CONTROL = 3, }; using replit_piece_t = std::pair; using replit_piece_map_t = std::unordered_map; static const std::string replit_ws_symbol = "\342\226\201"; struct mpt_vocab { bool is_replit = false; gpt_vocab raw; replit_piece_map_t piece_map; std::vector vocab; const char * end_of_text() const { return is_replit ? "<|endoftext|>" : "<|im_end|>"; } }; std::pair, float> encode_word(const std::string & word, const replit_piece_map_t & model) { std::vector best_segmentations_starts(word.length() + 1, -1); best_segmentations_starts[0] = 0; std::vector best_segmentations_scores(word.length() + 1, -std::numeric_limits::infinity()); best_segmentations_scores[0] = 1.0; for (size_t start_idx = 0; start_idx < word.length(); ++start_idx) { float best_score_at_start = best_segmentations_scores[start_idx]; for (size_t end_idx = start_idx + 1; end_idx <= word.length(); ++end_idx) { std::string token = word.substr(start_idx, end_idx - start_idx); if (model.count(token) && best_score_at_start != -std::numeric_limits::infinity()) { float token_score = model.at(token).second; float score = token_score + best_score_at_start; if (best_segmentations_scores[end_idx] == -std::numeric_limits::infinity() || best_segmentations_scores[end_idx] > score) { best_segmentations_starts[end_idx] = start_idx; best_segmentations_scores[end_idx] = score; } } } } if (best_segmentations_scores.back() == -std::numeric_limits::infinity()) { return std::make_pair(std::vector{0}, 0.0f); } float score = best_segmentations_scores.back(); int start = best_segmentations_starts.back(); int end = word.length(); std::vector tokens; while (start != 0) { const auto token_id = model.at(word.substr(start, end - start)).first; tokens.insert(tokens.begin(), token_id); int next_start = best_segmentations_starts[start]; end = start; start = next_start; } const auto token_id = model.at(word.substr(start, end - start)).first; tokens.insert(tokens.begin(), token_id); return std::make_pair(tokens, score); } bool replit_tokenizer_load(mpt_vocab & tokenizer, gguf_context * ggufctx, int tokens_keyidx, int max_vocab_size) { int scores_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.scores"); if (scores_keyidx == -1) { fprintf(stderr, "%s: llama token scores not found!\n", __func__); return false; } const auto *scores = reinterpret_cast(gguf_get_arr_data(ggufctx, scores_keyidx)); for (LLModel::Token i = 0; i < max_vocab_size; i++) { std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i); tokenizer.piece_map[word] = std::make_pair(i, -scores[i]); tokenizer.raw.id_to_token[i] = word; tokenizer.raw.token_to_id[word] = i; } return true; } std::string replace_all(const std::string & str, // where to work const std::string & find, // substitute 'find' const std::string & replace // by 'replace' ) { std::string result; size_t find_len = find.size(); size_t pos, from = 0; while (std::string::npos != (pos = str.find(find, from))) { result.append(str, from, pos - from); result.append(replace); from = pos + find_len; } result.append(str, from, std::string::npos); return result; } std::vector replit_tokenizer_tokenize(mpt_vocab & tokenizer, const std::string & text) { std::vector tokens; auto normalized_text = replace_all(text, " ", replit_ws_symbol); auto tokenized = encode_word(normalized_text, tokenizer.piece_map); return tokenized.first; } std::string replit_tokenizer_detokenize(mpt_vocab & tokenizer, const std::vector & tokens) { std::string text; for (auto token : tokens) { text += tokenizer.raw.id_to_token[token]; } return replace_all(text, replit_ws_symbol, " "); } static bool kv_cache_init( const struct mpt_hparams & hparams, struct llm_kv_cache & cache, ggml_type wtype, int n_ctx) { const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int64_t n_mem = (int64_t)n_layer*n_ctx; const int64_t n_elements = n_embd*n_mem; cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2_MiB); struct ggml_init_params params; params.mem_size = cache.buf.size; params.mem_buffer = cache.buf.addr; params.no_alloc = false; cache.ctx = ggml_init(params); if (!cache.ctx) { fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); return false; } cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); return true; } // load the model's weights from a file path. if mem_req ptr is passed the model is // only partially parsed to estimate required memory bool mpt_model_load(const std::string &fname, mpt_model & model, mpt_vocab & vocab, size_t * mem_req) { printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); if (mem_req != nullptr) { *mem_req = 0; } // create the ggml context struct gguf_init_params params = { /*.no_alloc = */ false, /*.ctx = */ &model.ctx, }; gguf_context *ggufctx = gguf_init_from_file(fname.c_str(), params); if (!ggufctx) { fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__); return false; } printf("%s: gguf version = %d\n", __func__, gguf_get_version(ggufctx)); printf("%s: gguf alignment = %zu\n", __func__, gguf_get_alignment(ggufctx)); printf("%s: gguf data offset = %zu\n", __func__, gguf_get_data_offset(ggufctx)); // print some standard metadata { int keyidx; keyidx = gguf_find_key(ggufctx, "general.name"); if (keyidx != -1) { printf("%s: model name = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.description"); if (keyidx != -1) { printf("%s: model description = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.author"); if (keyidx != -1) { printf("%s: model author = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.license"); if (keyidx != -1) { printf("%s: model license = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.architecture"); if (keyidx != -1) { printf("%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.file_type"); if (keyidx != -1) { printf("%s: model file type = %" PRIu32 "\n", __func__, gguf_get_val_u32(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "gptneox.tensor_data_layout"); if (keyidx != -1) { printf("%s: model data layout = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } keyidx = gguf_find_key(ggufctx, "general.source.huggingface.repository"); if (keyidx != -1) { printf("%s: model source HF repo = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); } } // check required metadata { // check model architecture kv int keyidx = gguf_find_key(ggufctx, "general.architecture"); if (keyidx == -1) { fprintf(stderr, "%s: gguf model architecture not found!\n", __func__); return false; } if (strcmp(gguf_get_val_str(ggufctx, keyidx), "mpt") != 0) { fprintf(stderr, "%s: model architecture not supported!\n", __func__); return false; } } // load hparams { auto & hparams = model.hparams; bool ok = false; int keyidx; do { keyidx = gguf_find_key(ggufctx, "mpt.context_length"); if (keyidx == -1) { break; } hparams.n_ctx = gguf_get_val_u32(ggufctx, keyidx); keyidx = gguf_find_key(ggufctx, "mpt.embedding_length"); if (keyidx == -1) { break; } hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx); keyidx = gguf_find_key(ggufctx, "mpt.attention.head_count"); if (keyidx == -1) { break; } hparams.n_head = gguf_get_val_u32(ggufctx, keyidx); keyidx = gguf_find_key(ggufctx, "mpt.block_count"); if (keyidx == -1) { break; } hparams.n_layer = gguf_get_val_u32(ggufctx, keyidx); keyidx = gguf_find_key(ggufctx, "mpt.attention.max_alibi_bias"); if (keyidx == -1) { break; } hparams.alibi_bias_max = gguf_get_val_f32(ggufctx, keyidx); keyidx = gguf_find_key(ggufctx, "mpt.attention.clamp_kqv"); if (keyidx != -1) { // optional hparams.clip_qkv = gguf_get_val_f32(ggufctx, keyidx); } keyidx = gguf_find_key(ggufctx, "mpt.attention.layer_norm_epsilon"); if (keyidx == -1) { break; } hparams.norm_eps = gguf_get_val_f32(ggufctx, keyidx); ok = true; } while (false); if (!ok) { fprintf(stderr, "%s: required hparam missing!\n", __func__); return false; } printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); printf("%s: n_embd = %d\n", __func__, hparams.n_embd); printf("%s: n_head = %d\n", __func__, hparams.n_head); printf("%s: n_layer = %d\n", __func__, hparams.n_layer); printf("%s: alibi_bias_max = %f\n", __func__, hparams.alibi_bias_max); printf("%s: clip_qkv = %f\n", __func__, hparams.clip_qkv); } // load vocab { auto & hparams = model.hparams; int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens"); if (tokens_keyidx == -1) { fprintf(stderr, "%s: tokenizer vocab not found!\n", __func__); return false; } int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model"); if (keyidx == -1) { fprintf(stderr, "%s: tokenizer model not found!\n", __func__); return false; } std::string tokenizer_model(gguf_get_val_str(ggufctx, keyidx)); hparams.n_vocab = gguf_get_arr_n(ggufctx, tokens_keyidx); printf("%s: %s tokenizer vocab = %d\n", __func__, tokenizer_model.c_str(), int(hparams.n_vocab)); if (tokenizer_model == "llama") { // Replit vocab.is_replit = true; if (!replit_tokenizer_load(vocab, ggufctx, tokens_keyidx, hparams.n_vocab)) { return false; } } else if (tokenizer_model == "gpt2") { int toktypes_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.token_type"); if (toktypes_keyidx == -1) { fprintf(stderr, "%s: gpt2 token types not found!\n", __func__); return false; } const auto *toktypes = reinterpret_cast(gguf_get_arr_data(ggufctx, toktypes_keyidx)); for (int i = 0; i < hparams.n_vocab; i++) { std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i); bool special = false; if (toktypes[i] == MPT_TOKEN_TYPE_CONTROL) { special = true; } else if (toktypes[i] != MPT_TOKEN_TYPE_NORMAL) { fprintf(stderr, "%s: unknown token type: %d\n", __func__, int(toktypes[i])); return false; } vocab.raw.token_to_id[word] = i; vocab.raw.id_to_token[i] = word; if (special) { vocab.raw.add_special_token(word); } } } else { fprintf(stderr, "%s: tokenizer model not supported!\n", __func__); return false; } } auto & ctx = model.ctx; size_t ctx_size = ggml_get_mem_size(ctx); printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size / (1024.0 * 1024.0)); if (mem_req != nullptr) { *mem_req = ctx_size; gguf_free(ggufctx); return false; } // prepare memory for the weights { const auto & hparams = model.hparams; model.layers.resize(hparams.n_layer); model.wte = ggml_get_tensor(ctx, "token_embd.weight"); model.norm_f_w = ggml_get_tensor(ctx, "output_norm.weight"); auto name = [](int i, std::string n) { static std::string key; key = "blk." + std::to_string(i) + "." + n; return key.c_str(); }; for (int i = 0; i < hparams.n_layer; ++i) { auto &layer = model.layers[i]; layer.norm_1_w = ggml_get_tensor(ctx, name(i, "attn_norm.weight")); layer.norm_2_w = ggml_get_tensor(ctx, name(i, "ffn_norm.weight")); layer.attn_Wqkv_w = ggml_get_tensor(ctx, name(i, "attn_qkv.weight")); layer.attn_out_proj_w = ggml_get_tensor(ctx, name(i, "attn_output.weight")); layer.ffn_up_proj_w = ggml_get_tensor(ctx, name(i, "ffn_up.weight")); layer.ffn_down_proj_w = ggml_get_tensor(ctx, name(i, "ffn_down.weight")); } } // key + value memory { const auto &hparams = model.hparams; if (!kv_cache_init(hparams, model.kv_self, GGML_TYPE_F16, model.hparams.n_ctx)) { fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__); ggml_free(ctx); return false; } const size_t memory_size = ggml_nbytes(model.kv_self.k) + ggml_nbytes(model.kv_self.v); printf("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); } model.scr0_buf.resize(256u * 1024 * 1024); model.scr1_buf.resize(256u * 1024 * 1024); return true; } bool mpt_eval( mpt_model & model, const int n_threads, const int n_past, const std::vector & embd_inp, std::vector & embd_w, size_t & mem_per_token) { const int N = embd_inp.size(); const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_head = hparams.n_head; const int n_vocab = hparams.n_vocab; const size_t init_buf_size = 1024_MiB; if (!model.eval_buf.addr || model.eval_buf.size < init_buf_size) model.eval_buf.resize(init_buf_size); if (mem_per_token > 0 && mem_per_token*N > model.eval_buf.size) { const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead // printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, model.buf.size, buf_size_new); // reallocate model.eval_buf.resize(buf_size_new); if (model.eval_buf.addr == nullptr) { fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, model.eval_buf.size); return false; } } struct ggml_init_params params = { .mem_size = model.eval_buf.size, .mem_buffer = model.eval_buf.addr, .no_alloc = false }; struct ggml_context * ctx0 = ggml_init(params); struct ggml_cgraph gf = {}; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); // wte struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd); for (int il = 0; il < n_layer; ++il) { ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, }); struct ggml_tensor * inpSA = inpL; struct ggml_tensor * cur = inpSA; // self-attention { // norm1 cur = ggml_norm(ctx0, cur, model.hparams.norm_eps); cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_1_w, cur), cur); // compute QKV cur = ggml_mul_mat(ctx0, model.layers[il].attn_Wqkv_w, cur); // TODO: clip_qkv struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*ggml_element_size(cur)*n_embd)); struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*ggml_element_size(cur)*n_embd)); struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*ggml_element_size(cur)*n_embd)); // TODO: qk_ln? (seems to be False in MPT-7B configs) { Vcur = ggml_transpose(ctx0, Vcur); struct ggml_tensor * k = ggml_view_1d(ctx0, model.kv_self.k, N*n_embd, (ggml_element_size(model.kv_self.k)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_2d(ctx0, model.kv_self.v, N, n_embd, ( n_ctx)*ggml_element_size(model.kv_self.v), (il*n_ctx)*ggml_element_size(model.kv_self.v)*n_embd + n_past*ggml_element_size(model.kv_self.v)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); } // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) struct ggml_tensor * Q = ggml_permute(ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, N), 0, 2, 1, 3); struct ggml_tensor * K = ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, model.kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.kv_self.k)*n_embd), n_embd/n_head, n_head, n_past + N), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head)) ); // Alibi struct ggml_tensor * KQ_scaled_biased = ggml_alibi( ctx0, ggml_cont(ctx0, KQ_scaled), n_past, n_head, model.hparams.alibi_bias_max ); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_biased, n_past); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() struct ggml_tensor * V = ggml_view_3d(ctx0, model.kv_self.v, n_past + N, n_embd/n_head, n_head, n_ctx*ggml_element_size(model.kv_self.v), n_ctx*ggml_element_size(model.kv_self.v)*n_embd/n_head, il*n_ctx*ggml_element_size(model.kv_self.v)*n_embd); // KQV = transpose(V) * KQ_soft_max struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection (no bias) cur = ggml_mul_mat(ctx0, model.layers[il].attn_out_proj_w, cur); } ggml_set_scratch(ctx0, {0, model.scr1_buf.size, model.scr1_buf.addr, }); // residual struct ggml_tensor * resSA = ggml_add(ctx0, cur, inpSA); // feed-forward network { cur = resSA; // norm2 cur = ggml_norm(ctx0, cur, model.hparams.norm_eps); cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_2_w, cur), cur); // ffn cur = ggml_mul_mat(ctx0, model.layers[il].ffn_up_proj_w, cur); cur = ggml_gelu(ctx0, cur); cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down_proj_w, cur); } // self-attention + FF inpL = ggml_add(ctx0, cur, resSA); } ggml_set_scratch(ctx0, {0, model.scr0_buf.size, model.scr0_buf.addr, }); struct ggml_tensor * out = inpL; // -> logits { out = ggml_norm(ctx0, out, model.hparams.norm_eps); out = ggml_mul(ctx0, ggml_repeat(ctx0, model.norm_f_w, out), out); ggml_set_scratch(ctx0, { 0, 0, nullptr, }); out = ggml_mul_mat(ctx0, model.wte, out); } ggml_build_forward_expand(&gf, out); // run the computation { std::unique_ptr data; auto plan = ggml_graph_plan(&gf, n_threads); if (plan.work_size > 0) { data.reset(new uint8_t[plan.work_size]); plan.work_data = data.get(); } ggml_graph_compute(&gf, &plan); } // return result for just the last token embd_w.resize(n_vocab); memcpy(embd_w.data(), (float *) ggml_get_data(out) + (n_vocab*(N-1)), sizeof(float)*n_vocab); if (mem_per_token == 0) { mem_per_token = ggml_used_mem(ctx0)/N; } //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); ggml_free(ctx0); return true; } #define MPT_MAX_RNG_STATE 64*1024 size_t mpt_get_state_size(const mpt_model &model) { // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state. // for reference, std::mt19937(1337) serializes to 6701 bytes. const size_t s_rng_size = sizeof(size_t); const size_t s_rng = MPT_MAX_RNG_STATE; const size_t s_kv_size = sizeof(size_t); const size_t s_kv_ntok = sizeof(int); const size_t s_kv = model.kv_self.buf.size; const size_t s_total = ( + s_rng_size + s_rng + s_kv_size + s_kv_ntok + s_kv ); fflush(stdout); return s_total; } size_t mpt_copy_state_data(const mpt_model &model, const std::mt19937 &rng, uint8_t *dest) { uint8_t * out = dest; fflush(stdout); // copy rng { std::stringstream rng_ss; rng_ss << rng; const size_t rng_size = rng_ss.str().size(); char rng_buf[MPT_MAX_RNG_STATE]; memset(&rng_buf[0], 0, MPT_MAX_RNG_STATE); memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size()); memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size); memcpy(out, &rng_buf[0], MPT_MAX_RNG_STATE); out += MPT_MAX_RNG_STATE; } // copy kv cache { const size_t kv_size = model.kv_self.buf.size; const int kv_ntok = model.kv_self.n; memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size); memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok); if (kv_size) { memcpy(out, model.kv_self.buf.addr, kv_size); out += kv_size; } } const size_t written = out - dest; assert(written == mpt_get_state_size(model)); fflush(stdout); return written; } size_t mpt_set_state_data(mpt_model *model, std::mt19937 *rng, const uint8_t *src) { const uint8_t * in = src; // set rng { size_t rng_size; char rng_buf[MPT_MAX_RNG_STATE]; memcpy(&rng_size, in, sizeof(rng_size)); in += sizeof(rng_size); memcpy(&rng_buf[0], in, MPT_MAX_RNG_STATE); in += MPT_MAX_RNG_STATE; std::stringstream rng_ss; rng_ss.str(std::string(&rng_buf[0], rng_size)); rng_ss >> *rng; assert(rng_ss.fail() == false); } // set kv cache { size_t kv_size; int kv_ntok; memcpy(&kv_size, in, sizeof(kv_size)); in += sizeof(kv_size); memcpy(&kv_ntok, in, sizeof(kv_ntok)); in += sizeof(kv_ntok); if (kv_size) { assert(model->kv_self.buf.size == kv_size); void * k_data = model->kv_self.k->data; // remember data pointers void * v_data = model->kv_self.v->data; // because their value is stored in buf and overwritten by memcpy memcpy(model->kv_self.buf.addr, in, kv_size); in += kv_size; model->kv_self.k->data = k_data; // restore correct data pointers model->kv_self.v->data = v_data; } model->kv_self.n = kv_ntok; } const size_t nread = in - src; assert(nread == mpt_get_state_size(*model)); fflush(stdout); return nread; } struct MPTPrivate { const std::string modelPath; bool modelLoaded; mpt_vocab vocab; mpt_model *model = nullptr; int64_t n_threads = 0; size_t mem_per_token = 0; std::mt19937 rng; bool has_end_of_text = false; }; MPT::MPT() : d_ptr(new MPTPrivate) { d_ptr->model = new mpt_model; d_ptr->model->ctx = nullptr; d_ptr->modelLoaded = false; } size_t MPT::requiredMem(const std::string &modelPath) { mpt_model dummy_model; mpt_vocab dummy_vocab; size_t mem_req; mpt_model_load(modelPath, dummy_model, dummy_vocab, &mem_req); return mem_req; } bool MPT::loadModel(const std::string &modelPath) { std::mt19937 rng(time(NULL)); d_ptr->rng = rng; // load the model if (!mpt_model_load(modelPath, *d_ptr->model, d_ptr->vocab, nullptr)) { std::cerr << "MPT ERROR: failed to load model from " << modelPath; return false; } d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); d_ptr->modelLoaded = true; const auto & vocab = d_ptr->vocab; d_ptr->has_end_of_text = vocab.raw.token_to_id.find(vocab.end_of_text()) != vocab.raw.token_to_id.end(); fflush(stdout); return true; } void MPT::setThreadCount(int32_t n_threads) { d_ptr->n_threads = n_threads; } int32_t MPT::threadCount() const { return d_ptr->n_threads; } MPT::~MPT() { delete d_ptr->model; } bool MPT::isModelLoaded() const { return d_ptr->modelLoaded; } size_t MPT::stateSize() const { return mpt_get_state_size(*d_ptr->model); } size_t MPT::saveState(uint8_t *dest) const { return mpt_copy_state_data(*d_ptr->model, d_ptr->rng, dest); } size_t MPT::restoreState(const uint8_t *src) { return mpt_set_state_data(d_ptr->model, &d_ptr->rng, src); } std::vector MPT::tokenize(PromptContext &, const std::string &str) const { if (d_ptr->vocab.is_replit) { return replit_tokenizer_tokenize(d_ptr->vocab, str); } return ::gpt_tokenize(d_ptr->vocab.raw, str); } std::string MPT::tokenToString(Token id) const { if (d_ptr->vocab.is_replit) { return replit_tokenizer_detokenize(d_ptr->vocab, {id}); } return d_ptr->vocab.raw.id_to_token[id]; } LLModel::Token MPT::sampleToken(PromptContext &promptCtx) const { const size_t n_prev_toks = std::min((size_t) promptCtx.repeat_last_n, promptCtx.tokens.size()); return gpt_sample_top_k_top_p(d_ptr->model->hparams.n_vocab, promptCtx.tokens.data() + promptCtx.tokens.size() - n_prev_toks, n_prev_toks, promptCtx.logits, promptCtx.top_k, promptCtx.top_p, promptCtx.temp, promptCtx.repeat_penalty, d_ptr->rng); } bool MPT::evalTokens(PromptContext &ctx, const std::vector &tokens) const { // determine the required inference memory per token: static bool initialized = false; if (!initialized) { mpt_eval(*d_ptr->model, d_ptr->n_threads, 0, { 0, 1, 2, 3 }, ctx.logits, d_ptr->mem_per_token); initialized = true; } return mpt_eval(*d_ptr->model, d_ptr->n_threads, ctx.n_past, tokens, ctx.logits, d_ptr->mem_per_token); } int32_t MPT::contextLength() const { return d_ptr->model->hparams.n_ctx; } const std::vector &MPT::endTokens() const { static std::vector fres; if (fres.empty()) { fres = {0, d_ptr->vocab.raw.token_to_id[d_ptr->vocab.end_of_text()]}; } return fres; } std::string get_arch_name(gguf_context *ctx_gguf) { std::string arch_name; const int kid = gguf_find_key(ctx_gguf, "general.architecture"); enum gguf_type ktype = gguf_get_kv_type(ctx_gguf, kid); if (ktype != GGUF_TYPE_STRING) { throw std::runtime_error("ERROR: Can't get general architecture from gguf file."); } return gguf_get_val_str(ctx_gguf, kid); } #if defined(_WIN32) #define DLL_EXPORT __declspec(dllexport) #else #define DLL_EXPORT __attribute__ ((visibility ("default"))) #endif extern "C" { DLL_EXPORT bool is_g4a_backend_model_implementation() { return true; } DLL_EXPORT const char *get_model_type() { return modelType_; } DLL_EXPORT const char *get_build_variant() { return GGML_BUILD_VARIANT; } DLL_EXPORT bool magic_match(const char * fname) { struct ggml_context * ctx_meta = NULL; struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &ctx_meta, }; gguf_context *ctx_gguf = gguf_init_from_file(fname, params); if (!ctx_gguf) return false; bool isValid = gguf_get_version(ctx_gguf) <= 2; isValid = isValid && get_arch_name(ctx_gguf) == "mpt"; gguf_free(ctx_gguf); return isValid; } DLL_EXPORT LLModel *construct() { return new MPT; } }