# Convert Hugging Face fine-tuned bloom-like models to ggml format # # Usage: # # python3 models/convert-h5-to-ggml.py # # This script is similar to "convert-pt-to-ggml.py" # import io import os import sys import struct import json import code import torch import numpy as np from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BloomForCausalLM # ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) if len(sys.argv) < 3: print("Usage: python convert-hf-to-ggml.py model_name dir-output [use-f32]") print(" model_name: name of the model to convert. Example: 'bigscience/bloomz-560m'") print(" dir-output: directory where the output file will be written") print(" use-f32: if present, use float32 instead of float16") sys.exit(1) model_name = sys.argv[1] dir_out = sys.argv[2] # make sure the output directory exists os.makedirs(dir_out, exist_ok=True) # possible data types # ftype == 0 -> float32 # ftype == 1 -> float16 # # map from ftype to string ftype_str = ["f32", "f16"] ftype = 1 if len(sys.argv) > 3: ftype = 0 tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) hparams = config.to_dict() print("Loading model: ", model_name) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, config=config, torch_dtype=torch.float16 if ftype == 1 else torch.float32, low_cpu_mem_usage=True) print("Model loaded: ", model_name) fname_out = dir_out + f"/ggml-model-{model_name.split('/')[-1]}-{ftype_str[ftype]}.bin" fout = open(fname_out, "wb") hparams["multiple_of"] = 1 fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex fout.write(struct.pack("i", hparams["vocab_size"])) # fout.write(struct.pack("i", hparams["seq_length"])) fout.write(struct.pack("i", hparams["d_model"])) fout.write(struct.pack("i", hparams["multiple_of"])) fout.write(struct.pack("i", hparams["n_heads"])) fout.write(struct.pack("i", hparams["n_layers"])) fout.write(struct.pack("i", ftype)) # # Is this correct?? # dot_token = tokenizer.encode(".")[0] # for i in range(hparams["vocab_size"]): # text = tokenizer.decode([i]).encode('utf-8') # fout.write(struct.pack("i", len(text))) # fout.write(text) list_vars = model.state_dict() for name in list_vars.keys(): data = list_vars[name].squeeze().numpy() print("Processing variable: " + name + " with shape: ", data.shape) # we don't need these if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"): print(" Skipping variable: " + name) continue if "Wqkv.weight" in name: # chunk qkv query, key, value = np.split(data, 3, axis=0) new_name = name.split("Wqkv.weight")[0] for (data, name) in [(query, new_name + "q_proj_w"), (key, new_name + "k_proj_w"), (value, new_name + "v_proj_w")]: print(f"Processing variable: {name} with shape: {data.shape}") n_dims = len(data.shape); # ftype == 0 -> float32, ftype == 1 -> float16 ftype_cur = 0; if ftype != 0: if name[-7:] == ".weight" and n_dims == 2: print(" Converting to float16") data = data.astype(np.float16) ftype_cur = 1 else: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 else: if data.dtype != np.float32: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 # header str = name.encode('utf-8') fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) for i in range(n_dims): fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) fout.write(str); # data data.tofile(fout) fout.write(struct.pack("i", len(data))) else: n_dims = len(data.shape); # ftype == 0 -> float32, ftype == 1 -> float16 ftype_cur = 0; if ftype != 0: if name[-7:] == ".weight" and n_dims == 2: print(" Converting to float16") data = data.astype(np.float16) ftype_cur = 1 else: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 else: if data.dtype != np.float32: print(" Converting to float32") data = data.astype(np.float32) ftype_cur = 0 # header str = name.encode('utf-8') fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) for i in range(n_dims): fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) fout.write(str); # data data.tofile(fout) fout.close() print("Done. Output file: " + fname_out) print("")