Working efficient chat context.

This commit is contained in:
Adam Treat 2023-04-09 13:39:28 -04:00
parent c763d4737d
commit e1677cb353
2 changed files with 39 additions and 67 deletions

View File

@ -687,14 +687,7 @@ void GPTJ::prompt(const std::string &prompt, std::function<bool(const std::strin
std::vector<gpt_vocab::id> embd_inp = ::gpt_tokenize(d_ptr->vocab, prompt);
n_predict = std::min(n_predict, d_ptr->model.hparams.n_ctx - (int) embd_inp.size());
ctx.n_past = std::min(ctx.n_past, 1024);
// n_batch = embd_inp.size();
std::cout << "The past was: " << ctx.n_past;
fflush(stdout);
std::vector<gpt_vocab::id> embd;
std::vector<gpt_vocab::id> resp;
ctx.n_past = std::min(ctx.n_past, d_ptr->model.hparams.n_ctx);
// determine the required inference memory per token:
static bool initialized = false;
@ -704,69 +697,50 @@ void GPTJ::prompt(const std::string &prompt, std::function<bool(const std::strin
initialized = true;
}
for (int i = embd.size(); i < embd_inp.size() + n_predict; i++) {
// predict
if (embd.size() > 0) {
const int64_t t_start_us = ggml_time_us();
// process the prompt in batches
size_t i = 0;
const int64_t t_start_prompt_us = ggml_time_us();
while (i < embd_inp.size()) {
size_t batch_end = std::min(i + n_batch, embd_inp.size());
std::vector<gpt_vocab::id> batch(embd_inp.begin() + i, embd_inp.begin() + batch_end);
if (!gptj_eval(d_ptr->model, d_ptr->n_threads, ctx.n_past, batch, ctx.logits, mem_per_token)) {
std::cerr << "GPT-J ERROR: Failed to process prompt\n";
return;
}
ctx.n_past += batch.size();
i = batch_end;
}
t_prompt_us += ggml_time_us() - t_start_prompt_us;
if (!gptj_eval(d_ptr->model, d_ptr->n_threads, ctx.n_past, embd, ctx.logits, mem_per_token)) {
std::cerr << "GPT-J ERROR: Failed to predict\n";
return;
}
// predict next tokens
int32_t totalPredictions = 0;
for (int i = 0; i < n_predict; i++) {
t_predict_us += ggml_time_us() - t_start_us;
// sample next token
const int n_vocab = d_ptr->model.hparams.n_vocab;
gpt_vocab::id id = 0;
{
const int64_t t_start_sample_us = ggml_time_us();
id = gpt_sample_top_k_top_p(d_ptr->vocab, ctx.logits.data() + (ctx.logits.size() - n_vocab),
top_k, top_p, temp, d_ptr->rng);
t_sample_us += ggml_time_us() - t_start_sample_us;
}
ctx.n_past += embd.size();
embd.clear();
resp.clear();
if (i >= embd_inp.size()) {
t_prompt_us += ggml_time_us() - t_main_start_us;
// sample next token
const int n_vocab = d_ptr->model.hparams.n_vocab;
gpt_vocab::id id = 0;
{
const int64_t t_start_sample_us = ggml_time_us();
id = gpt_sample_top_k_top_p(d_ptr->vocab, ctx.logits.data() + (ctx.logits.size() - n_vocab), top_k, top_p, temp, d_ptr->rng);
t_sample_us += ggml_time_us() - t_start_sample_us;
}
// add it to the context
embd.push_back(id);
if (id != 50256)
resp.push_back(id);
} else {
// if here, it means we are still processing the input prompt
for (int k = i; k < embd_inp.size(); k++) {
embd.push_back(embd_inp[k]);
if (embd.size() > n_batch) {
break;
}
}
i += embd.size() - 1;
const int64_t t_start_predict_us = ggml_time_us();
if (!gptj_eval(d_ptr->model, d_ptr->n_threads, ctx.n_past, { id }, ctx.logits, mem_per_token)) {
std::cerr << "GPT-J ERROR: Failed to predict next token\n";
return;
}
t_predict_us += ggml_time_us() - t_start_predict_us;
ctx.n_past += 1;
// display text
for (auto id : resp) {
if (!response(d_ptr->vocab.id_to_token[id]))
goto stop_generating;
}
// end of text token
if (embd.back() == 50256) {
++totalPredictions;
if (id == 50256 /*end of text*/ || !response(d_ptr->vocab.id_to_token[id]))
break;
}
}
stop_generating:
#if 0
#if 1
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
@ -774,7 +748,7 @@ stop_generating:
std::cout << "GPT-J INFO: mem per token = " << mem_per_token << " bytes\n";
std::cout << "GPT-J INFO: sample time = " << t_sample_us/1000.0f << " ms\n";
std::cout << "GPT-J INFO: prompt time = " << t_prompt_us/1000.0f << " ms\n";
std::cout << "GPT-J INFO: predict time = " << t_predict_us/1000.0f << " ms / " << t_predict_us/1000.0f/n_past << " ms per token\n";
std::cout << "GPT-J INFO: predict time = " << t_predict_us/1000.0f << " ms / " << t_predict_us/1000.0f/totalPredictions << " ms per token\n";
std::cout << "GPT-J INFO: total time = " << (t_main_end_us - t_main_start_us)/1000.0f << " ms\n";
fflush(stdout);
}

View File

@ -210,11 +210,9 @@ Window {
chatModel.append({"name": qsTr("Prompt: "), "currentResponse": false, "value": textInput.text})
chatModel.append({"name": qsTr("Response: "), "currentResponse": true, "value": "", "prompt": prompt})
// var contextPrompt = ""
// for (var i = 0; i < chatModel.count; ++i) {
// var listElement = chatModel.get(i)
// contextPrompt += listElement.value + "\n";
// }
// var contextPrompt;
// for (var i = 0; i < chatModel.count; ++i)
// contextPrompt += chatModel.get(i).value + "\n";
// prompt = contextPrompt + textInput.text + "\n"
LLM.resetResponse()