From aef524b460fbcd5251981aecebdc33da36298382 Mon Sep 17 00:00:00 2001 From: Zach Nussbaum Date: Fri, 5 May 2023 20:20:47 -0400 Subject: [PATCH] feat: mpt wip --- llmodel/mpt.cpp | 677 ++++++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 653 insertions(+), 24 deletions(-) diff --git a/llmodel/mpt.cpp b/llmodel/mpt.cpp index 96dcd65b..b7257372 100644 --- a/llmodel/mpt.cpp +++ b/llmodel/mpt.cpp @@ -20,17 +20,34 @@ static const size_t MB = 1024*1024; struct mpt_hparams { // FIXME: for mpt - int32_t n_vocab = 50400; + int32_t n_vocab = 50432; int32_t n_ctx = 2048; int32_t n_embd = 4096; - int32_t n_head = 16; - int32_t n_layer = 28; + int32_t n_head = 32; + int32_t n_layer = 32; + // this isn't used should we remove? int32_t n_rot = 64; int32_t f16 = 1; }; struct mpt_layer { - // FIXME + // normalization + struct ggml_tensor * ln_1_g; + struct ggml_tensor * ln_1_b; + + // attention + struct ggml_tensor * c_attn_q_proj_w; + struct ggml_tensor * c_attn_k_proj_w; + struct ggml_tensor * c_attn_v_proj_w; + + struct ggml_tensor * c_attn_proj_w; + + // ff + struct ggml_tensor * c_mlp_fc_w; + struct ggml_tensor * c_mlp_fc_b; + + struct ggml_tensor * c_mlp_proj_w; + struct ggml_tensor * c_mlp_proj_b; }; struct mpt_buffer { @@ -70,11 +87,20 @@ struct mpt_kv_cache { struct mpt_model { mpt_hparams hparams; + // normalization + struct ggml_tensor * ln_f_g; + struct ggml_tensor * ln_f_b; + + struct ggml_tensor * wte; // position embedding + + // mpt does weight tying + + std::vector layers; + struct mpt_kv_cache kv_self; struct ggml_context * ctx; std::map tensors; - // FIXME mpt_buffer buf; @@ -117,15 +143,320 @@ static bool kv_cache_init( } struct mpt_vocab { - // FIXME + using id = int32_t; + using token = std::string; + + std::map token_to_id; + std::map id_to_token; }; // load the model's weights from a stream bool mpt_model_load(const std::string &fname, std::istream &fin, mpt_model & model, mpt_vocab & vocab) { - // FIXME - return false; + printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); + + // verify magic + // TODO: Do we really need this? + // { + // uint32_t magic; + // fin.read((char *) &magic, sizeof(magic)); + // if (magic != 0x67676d6c) { + // fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); + // return false; + // } + // } + + // load hparams + { + auto & hparams = model.hparams; + + fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); + fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); + fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); + fin.read((char *) &hparams.n_head, sizeof(hparams.n_head)); + fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); + fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot)); + fin.read((char *) &hparams.f16, sizeof(hparams.f16)); + + printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); + printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); + printf("%s: n_embd = %d\n", __func__, hparams.n_embd); + printf("%s: n_head = %d\n", __func__, hparams.n_head); + printf("%s: n_layer = %d\n", __func__, hparams.n_layer); + printf("%s: n_rot = %d\n", __func__, hparams.n_rot); + printf("%s: f16 = %d\n", __func__, hparams.f16); + } + // load vocab + { + int32_t n_vocab = 0; + fin.read((char *) &n_vocab, sizeof(n_vocab)); + + if (n_vocab != model.hparams.n_vocab) { + fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", + __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); + return false; + } + + std::string word; + for (int i = 0; i < n_vocab; i++) { + uint32_t len; + fin.read((char *) &len, sizeof(len)); + + word.resize(len); + fin.read((char *) word.data(), len); + + vocab.token_to_id[word] = i; + vocab.id_to_token[i] = word; + } + } + // for the big tensors, we have the option to store the data in 16-bit floats or quantized + // in order to save memory and also to speed up the computation + ggml_type wtype = GGML_TYPE_COUNT; + switch (model.hparams.f16) { + case 0: wtype = GGML_TYPE_F32; break; + case 1: wtype = GGML_TYPE_F16; break; + case 2: wtype = GGML_TYPE_Q4_0; break; + case 3: wtype = GGML_TYPE_Q4_1; break; + default: + { + fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n", + __func__, fname.c_str(), model.hparams.f16); + return false; + } + } + + const ggml_type wtype2 = GGML_TYPE_F32; + + auto & ctx = model.ctx; + + size_t ctx_size = 0; + + { + const auto & hparams = model.hparams; + + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_ctx = hparams.n_ctx; + const int n_vocab = hparams.n_vocab; + + ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_g + ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // ln_f_b + + ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // wte + + // with weight tying i don't think we need this + // ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // lmh_g + // ctx_size += n_vocab*ggml_type_sizef(GGML_TYPE_F32); // lmh_b + + ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_g + ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ln_1_b + + ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_q_proj_w + ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_k_proj_w + ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_v_proj_w + + ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // c_attn_proj_w + + ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_fc_w + ctx_size += n_layer*( 4*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_fc_b + + ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_sizef(wtype)); // c_mlp_proj_w + ctx_size += n_layer*( n_embd*ggml_type_sizef(GGML_TYPE_F32)); // c_mlp_proj_b + + ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k + ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v + + // TODO: what is this?? + ctx_size += (5 + 10*n_layer)*256; // object overhead + + printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); + } + + // create the ggml context + { + struct ggml_init_params params = { + .mem_size = ctx_size, + .mem_buffer = NULL, + }; + + model.ctx = ggml_init(params); + if (!model.ctx) { + fprintf(stderr, "%s: ggml_init() failed\n", __func__); + return false; + } + } + // prepare memory for the weights + { + const auto & hparams = model.hparams; + + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_ctx = hparams.n_ctx; + const int n_vocab = hparams.n_vocab; + + model.layers.resize(n_layer); + + model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); + + model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + + // we don't need this because of weight tying + // model.lmh_g = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); + // model.lmh_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_vocab); + + // map by name + model.tensors["transformer.wte.weight"] = model.wte; + + model.tensors["transformer.ln_f.weight"] = model.ln_f_g; + model.tensors["transformer.ln_f.bias"] = model.ln_f_b; + + for (int i = 0; i < n_layer; ++i) { + auto & layer = model.layers[i]; + + layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + + layer.c_attn_q_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); + layer.c_attn_k_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); + layer.c_attn_v_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); + + layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); + + layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, n_embd, 4*n_embd); + layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd); + + layer.c_mlp_proj_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd); + layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); + + // map by name + model.tensors["transformer.h." + std::to_string(i) + ".ln_1.weight"] = layer.ln_1_g; + model.tensors["transformer.h." + std::to_string(i) + ".ln_1.bias"] = layer.ln_1_b; + + model.tensors["transformer.h." + std::to_string(i) + ".attn.q_proj.weight"] = layer.c_attn_q_proj_w; + model.tensors["transformer.h." + std::to_string(i) + ".attn.k_proj.weight"] = layer.c_attn_k_proj_w; + model.tensors["transformer.h." + std::to_string(i) + ".attn.v_proj.weight"] = layer.c_attn_v_proj_w; + + model.tensors["transformer.h." + std::to_string(i) + ".attn.out_proj.weight"] = layer.c_attn_proj_w; + + model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.weight"] = layer.c_mlp_fc_w; + model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_in.bias"] = layer.c_mlp_fc_b; + + model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.weight"] = layer.c_mlp_proj_w; + model.tensors["transformer.h." + std::to_string(i) + ".mlp.fc_out.bias"] = layer.c_mlp_proj_b; + } + + // key + value memory + { + const auto & hparams = model.hparams; + + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_ctx = hparams.n_ctx; + + const int n_mem = n_layer*n_ctx; + const int n_elements = n_embd*n_mem; + + if (!kv_cache_init(hparams, model.kv_self, GGML_TYPE_F32, model.hparams.n_ctx)) { + fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__); + ggml_free(ctx); + return false; + } + + const size_t memory_size = ggml_nbytes(model.kv_self.k) + ggml_nbytes(model.kv_self.v); + printf("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); + } +// load weights + { + int n_tensors = 0; + size_t total_size = 0; + + printf("%s: ", __func__); + + while (true) { + int32_t n_dims; + int32_t length; + int32_t ftype; + + fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); + fin.read(reinterpret_cast(&length), sizeof(length)); + fin.read(reinterpret_cast(&ftype), sizeof(ftype)); + + if (fin.eof()) { + break; + } + + int32_t nelements = 1; + int32_t ne[2] = { 1, 1 }; + for (int i = 0; i < n_dims; ++i) { + fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); + nelements *= ne[i]; + } + + std::string name(length, 0); + fin.read(&name[0], length); + + if (model.tensors.find(name.data()) == model.tensors.end()) { + fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); + return false; + } + + auto tensor = model.tensors[name.data()]; + if (ggml_nelements(tensor) != nelements) { + fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); + return false; + } + + if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { + fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%lu, %lu], expected [%d, %d]\n", + __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]); + return false; + } + + if (0) { + static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", }; + printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], ftype_str[ftype], ggml_nbytes(tensor)/1024.0/1024.0, ggml_nbytes(tensor)); + } + + size_t bpe = 0; + + switch (ftype) { + case 0: bpe = ggml_type_size(GGML_TYPE_F32); break; + case 1: bpe = ggml_type_size(GGML_TYPE_F16); break; + case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break; + case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break; + default: + { + fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype); + return false; + } + }; + + if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { + fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", + __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); + return false; + } + + fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); + + //printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); + total_size += ggml_nbytes(tensor); + if (++n_tensors % 8 == 0) { + printf("."); + fflush(stdout); + } + } + + printf(" done\n"); + + printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors); + } + + return true; + } } + // load the model's weights from a file path bool gptj_model_load(const std::string & fname, mpt_model & model, mpt_vocab & vocab) { @@ -147,8 +478,223 @@ bool mpt_eval( const std::vector & embd_inp, std::vector & embd_w, size_t & mem_per_token) { - // FIXME - return false; + const int N = embd_inp.size(); + + const auto & hparams = model.hparams; + + const int n_embd = hparams.n_embd; + const int n_layer = hparams.n_layer; + const int n_ctx = hparams.n_ctx; + const int n_head = hparams.n_head; + const int n_vocab = hparams.n_vocab; + const int n_rot = hparams.n_rot; + + const int d_key = n_embd/n_head; + + static size_t buf_size = 1024u*MB; + if (!model.buf.addr || model.buf.size < buf_size) + model.buf.resize(buf_size); + + if (mem_per_token > 0 && mem_per_token*N > model.buf.size) { + const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead + printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, model.buf.size, buf_size_new); + + // reallocate + model.buf.resize(buf_size_new); + if (model.buf.addr == nullptr) { + fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, model.buf.size); + return false; + } + } + + struct ggml_init_params params = { + .mem_size = model.buf.size, + .mem_buffer = model.buf.addr, + }; + + struct ggml_context * ctx0 = ggml_init(params); + struct ggml_cgraph gf = { .n_threads = n_threads }; + + struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd)); + + // wte + struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * cur; + + // norm + { + cur = ggml_norm(ctx0, inpL); + + // cur = ln_1_g*cur + ln_1_b + cur = ggml_add(ctx0, + ggml_mul(ctx0, + ggml_repeat(ctx0, model.layers[il].ln_1_g, cur), + cur), + ggml_repeat(ctx0, model.layers[il].ln_1_b, cur)); + } + + struct ggml_tensor * inpSA = cur; + + // self-attention + { + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].c_attn_q_proj_w, cur); + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].c_attn_k_proj_w, cur); + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].c_attn_v_proj_w, cur); + + // store key and value to memory + if (N >= 1) { + struct ggml_tensor * k = ggml_view_1d(ctx0, model.kv_self.k, N*n_embd, (ggml_element_size(model.kv_self.k)*n_embd)*(il*n_ctx + n_past)); + struct ggml_tensor * v = ggml_view_1d(ctx0, model.kv_self.v, N*n_embd, (ggml_element_size(model.kv_self.v)*n_embd)*(il*n_ctx + n_past)); + + ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); + ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); + } + // we need to replace rope with alibi + + // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) + struct ggml_tensor * Q = + ggml_permute(ctx0, + ggml_cpy(ctx0, + Qcur, + ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)), + 0, 2, 1, 3); + + // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) + struct ggml_tensor * K = + ggml_permute(ctx0, + ggml_reshape_3d(ctx0, + ggml_view_1d(ctx0, model.kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.kv_self.k)*n_embd), + n_embd/n_head, n_head, n_past + N), + 0, 2, 1, 3); + + // K * Q + struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); + + // KQ_scaled = KQ / sqrt(n_embd/n_head) + struct ggml_tensor * KQ_scaled = + ggml_scale(ctx0, + KQ, + ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head)) + ); + + struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, n_past, n_head); + + // KQ_masked = mask_past(KQ_scaled) + struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past); + + // KQ = soft_max(KQ_masked) + struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); + + // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() + struct ggml_tensor * V_trans = + ggml_cpy(ctx0, + ggml_permute(ctx0, + ggml_reshape_3d(ctx0, + ggml_view_1d(ctx0, model.kv_self.v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.kv_self.v)*n_embd), + n_embd/n_head, n_head, n_past + N), + 1, 2, 0, 3), + ggml_new_tensor_3d(ctx0, model.kv_self.v->type, n_past + N, n_embd/n_head, n_head)); + + // KQV = transpose(V) * KQ_soft_max + struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); + + // KQV_merged = KQV.permute(0, 2, 1, 3) + struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); + + // cur = KQV_merged.contiguous().view(n_embd, N) + cur = ggml_cpy(ctx0, + KQV_merged, + ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); + + // projection (no bias) + cur = ggml_mul_mat(ctx0, + model.layers[il].c_attn_proj_w, + cur); + } + + struct ggml_tensor * inpFF = cur; + + // feed-forward network + // this is independent of the self-attention result, so it could be done in parallel to the self-attention + { + // note here we pass inpSA instead of cur + cur = ggml_mul_mat(ctx0, + model.layers[il].c_mlp_fc_w, + inpSA); + + cur = ggml_add(ctx0, + ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur), + cur); + + // RELU activation + cur = ggml_relu(ctx0, cur); + + // projection + // cur = proj_w*cur + proj_b + cur = ggml_mul_mat(ctx0, + model.layers[il].c_mlp_proj_w, + cur); + + cur = ggml_add(ctx0, + ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur), + cur); + } + + // self-attention + FF + cur = ggml_add(ctx0, cur, inpFF); + + // input for next layer + inpL = ggml_add(ctx0, cur, inpL); + } + + // norm + { + inpL = ggml_norm(ctx0, inpL); + + // inpL = ln_f_g*inpL + ln_f_b + inpL = ggml_add(ctx0, + ggml_mul(ctx0, + ggml_repeat(ctx0, model.ln_f_g, inpL), + inpL), + ggml_repeat(ctx0, model.ln_f_b, inpL)); + } + + // lm_head with weight tying + { + inpL = ggml_mul_mat(ctx0, model.wte, inpL); + + } + + // logits -> probs + //inpL = ggml_soft_max(ctx0, inpL); + + // run the computation + ggml_build_forward_expand(&gf, inpL); + ggml_graph_compute (ctx0, &gf); + + //if (n_past%100 == 0) { + // ggml_graph_print (&gf); + // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); + //} + + //embd_w.resize(n_vocab*N); + //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); + + // return result for just the last token + embd_w.resize(n_vocab); + memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); + + if (mem_per_token == 0) { + mem_per_token = ggml_used_mem(ctx0)/N; + } + //printf("used_mem = %zu\n", ggml_used_mem(ctx0)); + + ggml_free(ctx0); + + return true; } std::vector mpt_tokenize(const mpt_vocab & vocab, const std::string & text) { @@ -161,20 +707,6 @@ const std::string mpt_token_to_str(const mpt_vocab & vocab, int token) { return std::string(); } -int mpt_sample_top_k_top_p( - const mpt_vocab & vocab, - const int32_t * last_n_tokens_data, - int last_n_tokens_size, - const std::vector logits, - int top_k, - double top_p, - double temp, - float repeat_penalty, - std::mt19937 & rng) -{ - // FIXME - return 0; -} #define MPT_MAX_RNG_STATE 64*1024 @@ -237,6 +769,103 @@ size_t mpt_copy_state_data(const mpt_model &model, const std::mt19937 &rng, uint return written; } +mpt_vocab::id mpt_sample_top_k_top_p( + const mpt_vocab & vocab, + const int32_t * last_n_tokens_data, + int last_n_tokens_size, + const std::vector logits, + int top_k, + double top_p, + double temp, + float repeat_penalty, + std::mt19937 & rng) { + int n_logits = vocab.id_to_token.size(); + + const auto last_n_tokens = std::vector(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size); + const auto * plogits = logits.data() + logits.size() - n_logits; + + std::vector> logits_id; + logits_id.reserve(n_logits); + + { + const float scale = 1.0f/temp; + for (int i = 0; i < n_logits; ++i) { + // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858) + // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main + if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) { + // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability + if (plogits[i] < 0.0f) { + logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i)); + } else { + logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i)); + } + } else { + logits_id.push_back(std::make_pair(plogits[i]*scale, i)); + } + } + } + + // find the top K tokens + std::partial_sort( + logits_id.begin(), + logits_id.begin() + top_k, logits_id.end(), + [](const std::pair & a, const std::pair & b) { + return a.first > b.first; + }); + + logits_id.resize(top_k); + + double maxl = -INFINITY; + for (const auto & kv : logits_id) { + maxl = std::max(maxl, kv.first); + } + + // compute probs for the top K tokens + std::vector probs; + probs.reserve(logits_id.size()); + + double sum = 0.0; + for (const auto & kv : logits_id) { + double p = exp(kv.first - maxl); + probs.push_back(p); + sum += p; + } + + // normalize the probs + for (auto & p : probs) { + p /= sum; + } + + if (top_p < 1.0f) { + double cumsum = 0.0f; + for (int i = 0; i < top_k; i++) { + cumsum += probs[i]; + if (cumsum >= top_p) { + top_k = i + 1; + probs.resize(top_k); + logits_id.resize(top_k); + break; + } + } + + cumsum = 1.0/cumsum; + for (int i = 0; i < (int) probs.size(); i++) { + probs[i] *= cumsum; + } + } + + //printf("\n"); + //for (int i = 0; i < (int) probs.size(); i++) { + // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]); + //} + //exit(0); + + std::discrete_distribution<> dist(probs.begin(), probs.end()); + int idx = dist(rng); + + return logits_id[idx].second; +} + size_t mpt_set_state_data(mpt_model *model, std::mt19937 *rng, const uint8_t *src) { const uint8_t * in = src;