diff --git a/data.py b/data.py index ff79924c..a83ed3d6 100644 --- a/data.py +++ b/data.py @@ -31,7 +31,7 @@ def tokenize_inputs(config, tokenizer, examples): # add target tokens, remove bos input_ids[i, newline_plus_inputs: newline_plus_inputs + len(target_tokens)] = target_tokens - # add eos token, enforce stopping if we don't truncate + # add eos token; ensure generation stops if inputs aren't truncated # we don't want long code to stop generating if truncated during training if newline_plus_inputs + len(target_tokens) < max_length: input_ids[i, newline_plus_inputs + len(target_tokens)] = tokenizer.eos_token_id @@ -57,7 +57,6 @@ def load_data(config, tokenizer): dataset_path = config["dataset_path"] if os.path.exists(dataset_path): - # check if path is a directory if os.path.isdir(dataset_path): files = glob.glob(os.path.join(dataset_path, "*_clean.jsonl")) else: @@ -68,7 +67,7 @@ def load_data(config, tokenizer): dataset = load_dataset("json", data_files=files, split="train") else: - dataset = load_dataset(dataset_path,split='train') + dataset = load_dataset(dataset_path, split="train") dataset = dataset.train_test_split(test_size=.05, seed=config["seed"]) @@ -87,7 +86,7 @@ def load_data(config, tokenizer): **kwargs ) val_dataset = val_dataset.map( - lambda ele: tokenize_inputs(config, tokenizer, ele), + lambda ele: tokenize_inputs(config, tokenizer, ele), batched=True, remove_columns=["source", "prompt"], **kwargs