Add llama.cpp support for loading llama based models in the gui. We now

support loading both gptj derived models and llama derived models.
This commit is contained in:
Adam Treat 2023-04-15 15:57:32 -04:00
parent 00cb5fe2a5
commit 71b308e914
13 changed files with 571 additions and 12 deletions

3
.gitmodules vendored
View File

@ -1,3 +1,6 @@
[submodule "ggml"]
path = ggml
url = https://github.com/manyoso/ggml.git
[submodule "llama.cpp"]
path = llama.cpp
url = https://github.com/manyoso/llama.cpp.git

View File

@ -28,15 +28,19 @@ set(CMAKE_CXX_STANDARD_REQUIRED ON)
find_package(Qt6 6.2 COMPONENTS Quick Svg REQUIRED)
set(GGML_BUILD_EXAMPLES ON CACHE BOOL "ggml: build examples" FORCE)
add_subdirectory(ggml)
set(LLAMA_BUILD_EXAMPLES ON CACHE BOOL "llama: build examples" FORCE)
set(BUILD_SHARED_LIBS ON FORCE)
add_subdirectory(llama.cpp)
qt_add_executable(chat
main.cpp
download.h download.cpp
gptj.h gptj.cpp
llamamodel.h llamamodel.cpp
llama.cpp/examples/common.cpp
llm.h llm.cpp
llmodel.h
utils.h utils.cpp
)
qt_add_qml_module(chat
@ -72,7 +76,7 @@ target_compile_definitions(chat
target_link_libraries(chat
PRIVATE Qt6::Quick Qt6::Svg)
target_link_libraries(chat
PRIVATE ggml ggml_utils)
PRIVATE llama)
set(COMPONENT_NAME_MAIN ${PROJECT_NAME})
set(CMAKE_INSTALL_PREFIX ${CMAKE_BINARY_DIR}/install)

View File

@ -1,5 +1,5 @@
#include "gptj.h"
#include "ggml/ggml.h"
#include "llama.cpp/ggml.h"
#include "utils.h"
@ -644,6 +644,12 @@ GPTJ::GPTJ()
d_ptr->modelLoaded = false;
}
bool GPTJ::loadModel(const std::string &modelPath)
{
std::cerr << "GPTJ ERROR: loading gpt model from file unsupported!\n";
return false;
}
bool GPTJ::loadModel(const std::string &modelPath, std::istream &fin) {
std::mt19937 rng(time(NULL));
d_ptr->rng = rng;

1
gptj.h
View File

@ -12,6 +12,7 @@ public:
GPTJ();
~GPTJ();
bool loadModel(const std::string &modelPath) override;
bool loadModel(const std::string &modelPath, std::istream &fin) override;
bool isModelLoaded() const override;
void prompt(const std::string &prompt, std::function<bool(const std::string&)> response,

1
llama.cpp Submodule

@ -0,0 +1 @@
Subproject commit c8c2c524827be8fd681a63f0e5a697b0bf4c587b

160
llamamodel.cpp Normal file
View File

@ -0,0 +1,160 @@
#include "llamamodel.h"
#include "llama.cpp/examples/common.h"
#include "llama.cpp/llama.h"
#include "llama.cpp/ggml.h"
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include <iostream>
#include <unistd.h>
#include <random>
#include <thread>
struct LLamaPrivate {
const std::string modelPath;
bool modelLoaded;
llama_context *ctx = nullptr;
llama_context_params params;
int64_t n_threads = 0;
};
LLamaModel::LLamaModel()
: d_ptr(new LLamaPrivate) {
d_ptr->modelLoaded = false;
}
bool LLamaModel::loadModel(const std::string &modelPath, std::istream &fin)
{
std::cerr << "LLAMA ERROR: loading llama model from stream unsupported!\n";
return false;
}
bool LLamaModel::loadModel(const std::string &modelPath)
{
// load the model
d_ptr->params = llama_context_default_params();
d_ptr->ctx = llama_init_from_file(modelPath.c_str(), d_ptr->params);
if (!d_ptr->ctx) {
std::cerr << "LLAMA ERROR: failed to load model from " << modelPath << std::endl;
return false;
}
d_ptr->n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
d_ptr->modelLoaded = true;
return true;
}
void LLamaModel::setThreadCount(int32_t n_threads) {
d_ptr->n_threads = n_threads;
}
int32_t LLamaModel::threadCount() {
return d_ptr->n_threads;
}
LLamaModel::~LLamaModel()
{
}
bool LLamaModel::isModelLoaded() const
{
return d_ptr->modelLoaded;
}
void LLamaModel::prompt(const std::string &prompt, std::function<bool(const std::string&)> response,
PromptContext &promptCtx, int32_t n_predict, int32_t top_k, float top_p, float temp, int32_t n_batch) {
if (!isModelLoaded()) {
std::cerr << "LLAMA ERROR: prompt won't work with an unloaded model!\n";
return;
}
gpt_params params;
params.prompt = prompt;
// Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' ');
// tokenize the prompt
auto embd_inp = ::llama_tokenize(d_ptr->ctx, params.prompt, false);
const int n_ctx = llama_n_ctx(d_ptr->ctx);
if ((int) embd_inp.size() > n_ctx - 4) {
std::cerr << "LLAMA ERROR: prompt is too long\n";
return;
}
n_predict = std::min(n_predict, n_ctx - (int) embd_inp.size());
promptCtx.n_past = std::min(promptCtx.n_past, n_ctx);
// number of tokens to keep when resetting context
params.n_keep = (int)embd_inp.size();
// process the prompt in batches
size_t i = 0;
const int64_t t_start_prompt_us = ggml_time_us();
while (i < embd_inp.size()) {
size_t batch_end = std::min(i + n_batch, embd_inp.size());
std::vector<llama_token> batch(embd_inp.begin() + i, embd_inp.begin() + batch_end);
if (promptCtx.n_past + batch.size() > n_ctx) {
std::cerr << "eval n_ctx " << n_ctx << " n_past " << promptCtx.n_past << std::endl;
promptCtx.n_past = std::min(promptCtx.n_past, int(n_ctx - batch.size()));
std::cerr << "after n_ctx " << n_ctx << " n_past " << promptCtx.n_past << std::endl;
}
if (llama_eval(d_ptr->ctx, batch.data(), batch.size(), promptCtx.n_past, d_ptr->n_threads)) {
std::cerr << "LLAMA ERROR: Failed to process prompt\n";
return;
}
// We pass a null string for each token to see if the user has asked us to stop...
size_t tokens = batch_end - i;
for (size_t t = 0; t < tokens; ++t)
if (!response(""))
return;
promptCtx.n_past += batch.size();
i = batch_end;
}
std::vector<llama_token> cachedTokens;
// predict next tokens
int32_t totalPredictions = 0;
for (int i = 0; i < n_predict; i++) {
// sample next token
llama_token id = llama_sample_top_p_top_k(d_ptr->ctx, {}, 0, top_k, top_p, temp, 1.0f);
if (promptCtx.n_past + 1 > n_ctx) {
std::cerr << "eval 2 n_ctx " << n_ctx << " n_past " << promptCtx.n_past << std::endl;
promptCtx.n_past = std::min(promptCtx.n_past, n_ctx - 1);
std::cerr << "after 2 n_ctx " << n_ctx << " n_past " << promptCtx.n_past << std::endl;
}
if (llama_eval(d_ptr->ctx, &id, 1, promptCtx.n_past, d_ptr->n_threads)) {
std::cerr << "LLAMA ERROR: Failed to predict next token\n";
return;
}
cachedTokens.emplace_back(id);
for (int j = 0; j < cachedTokens.size(); ++j) {
llama_token cachedToken = cachedTokens.at(j);
promptCtx.n_past += 1;
// display text
++totalPredictions;
if (id == llama_token_eos() || !response(llama_token_to_str(d_ptr->ctx, cachedToken)))
goto stop_generating;
}
cachedTokens.clear();
}
stop_generating:
return;
}

28
llamamodel.h Normal file
View File

@ -0,0 +1,28 @@
#ifndef LLAMAMODEL_H
#define LLAMAMODEL_H
#include <string>
#include <functional>
#include <vector>
#include "llmodel.h"
class LLamaPrivate;
class LLamaModel : public LLModel {
public:
LLamaModel();
~LLamaModel();
bool loadModel(const std::string &modelPath) override;
bool loadModel(const std::string &modelPath, std::istream &fin) override;
bool isModelLoaded() const override;
void prompt(const std::string &prompt, std::function<bool(const std::string&)> response,
PromptContext &ctx, int32_t n_predict = 200, int32_t top_k = 50400, float top_p = 1.0f,
float temp = 0.0f, int32_t n_batch = 9) override;
void setThreadCount(int32_t n_threads) override;
int32_t threadCount() override;
private:
LLamaPrivate *d_ptr;
};
#endif // LLAMAMODEL_H

18
llm.cpp
View File

@ -47,20 +47,32 @@ bool LLMObject::loadModelPrivate(const QString &modelName)
return true;
if (isModelLoaded()) {
resetContext();
delete m_llmodel;
m_llmodel = nullptr;
emit isModelLoadedChanged();
}
m_llmodel = new GPTJ;
bool isGPTJ = false;
QString filePath = QCoreApplication::applicationDirPath() + QDir::separator() +
"ggml-" + modelName + ".bin";
QFileInfo info(filePath);
if (info.exists()) {
auto fin = std::ifstream(filePath.toStdString(), std::ios::binary);
m_llmodel->loadModel(modelName.toStdString(), fin);
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
fin.seekg(0);
isGPTJ = magic == 0x67676d6c;
if (isGPTJ) {
m_llmodel = new GPTJ;
m_llmodel->loadModel(modelName.toStdString(), fin);
} else {
m_llmodel = new LLamaModel;
m_llmodel->loadModel(filePath.toStdString());
}
emit isModelLoadedChanged();
emit threadCountChanged();
}

1
llm.h
View File

@ -4,6 +4,7 @@
#include <QObject>
#include <QThread>
#include "gptj.h"
#include "llamamodel.h"
class LLMObject : public QObject
{

View File

@ -10,6 +10,7 @@ public:
explicit LLModel() {}
virtual ~LLModel() {}
virtual bool loadModel(const std::string &modelPath) = 0;
virtual bool loadModel(const std::string &modelPath, std::istream &fin) = 0;
virtual bool isModelLoaded() const = 0;
struct PromptContext {
@ -19,8 +20,8 @@ public:
virtual void prompt(const std::string &prompt, std::function<bool(const std::string&)> response,
PromptContext &ctx, int32_t n_predict = 200, int32_t top_k = 40, float top_p = 0.9f,
float temp = 0.9f, int32_t n_batch = 9) = 0;
virtual void setThreadCount(int32_t n_threads);
virtual int32_t threadCount();
virtual void setThreadCount(int32_t n_threads) {}
virtual int32_t threadCount() { return 1; }
};
#endif // LLMODEL_H

View File

@ -70,7 +70,9 @@ Window {
}
onActivated: {
LLM.stopGenerating()
LLM.modelName = comboBox.currentText
chatModel.clear()
}
}
}
@ -775,7 +777,7 @@ Window {
Accessible.description: qsTr("This is the list of prompt/response pairs comprising the actual conversation with the model")
delegate: TextArea {
text: currentResponse ? LLM.response : value
text: currentResponse ? LLM.response : (value ? value : "")
width: listView.width
color: "#d1d5db"
wrapMode: Text.WordWrap
@ -800,8 +802,8 @@ Window {
anchors.leftMargin: 90
anchors.top: parent.top
anchors.topMargin: 5
visible: currentResponse && LLM.response === "" && LLM.responseInProgress
running: currentResponse && LLM.response === "" && LLM.responseInProgress
visible: (currentResponse ? true : false) && LLM.response === "" && LLM.responseInProgress
running: (currentResponse ? true : false) && LLM.response === "" && LLM.responseInProgress
Accessible.role: Accessible.Animation
Accessible.name: qsTr("Busy indicator")

257
utils.cpp Normal file
View File

@ -0,0 +1,257 @@
#include "utils.h"
#include <fstream>
#include <regex>
void replace(std::string & str, const std::string & needle, const std::string & replacement) {
size_t pos = 0;
while ((pos = str.find(needle, pos)) != std::string::npos) {
str.replace(pos, needle.length(), replacement);
pos += replacement.length();
}
}
std::map<std::string, int32_t> json_parse(const std::string & fname) {
std::map<std::string, int32_t> result;
// read file into string
std::string json;
{
std::ifstream ifs(fname);
if (!ifs) {
fprintf(stderr, "Failed to open %s\n", fname.c_str());
exit(1);
}
json = std::string((std::istreambuf_iterator<char>(ifs)),
(std::istreambuf_iterator<char>()));
}
if (json[0] != '{') {
return result;
}
// parse json
{
bool has_key = false;
bool in_token = false;
std::string str_key = "";
std::string str_val = "";
int n = json.size();
for (int i = 1; i < n; ++i) {
if (!in_token) {
if (json[i] == ' ') continue;
if (json[i] == '"') {
in_token = true;
continue;
}
} else {
if (json[i] == '\\' && i+1 < n) {
if (has_key == false) {
str_key += json[i];
} else {
str_val += json[i];
}
++i;
} else if (json[i] == '"') {
if (has_key == false) {
has_key = true;
++i;
while (json[i] == ' ') ++i;
++i; // :
while (json[i] == ' ') ++i;
if (json[i] != '\"') {
while (json[i] != ',' && json[i] != '}') {
str_val += json[i++];
}
has_key = false;
} else {
in_token = true;
continue;
}
} else {
has_key = false;
}
::replace(str_key, "\\u0120", " " ); // \u0120 -> space
::replace(str_key, "\\u010a", "\n"); // \u010a -> new line
::replace(str_key, "\\\"", "\""); // \\\" -> "
try {
result[str_key] = std::stoi(str_val);
} catch (...) {
//fprintf(stderr, "%s: ignoring key '%s' with value '%s'\n", fname.c_str(), str_key.c_str(), str_val.c_str());
}
str_key = "";
str_val = "";
in_token = false;
continue;
}
if (has_key == false) {
str_key += json[i];
} else {
str_val += json[i];
}
}
}
}
return result;
}
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
std::vector<std::string> words;
// first split the text into words
{
std::string str = text;
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
std::regex re(pat);
std::smatch m;
while (std::regex_search(str, m, re)) {
for (auto x : m) {
words.push_back(x);
}
str = m.suffix();
}
}
// find the longest tokens that form the words:
std::vector<gpt_vocab::id> tokens;
for (const auto & word : words) {
if (word.size() == 0) continue;
int i = 0;
int n = word.size();
while (i < n) {
int j = n;
while (j > i) {
auto it = vocab.token_to_id.find(word.substr(i, j-i));
if (it != vocab.token_to_id.end()) {
tokens.push_back(it->second);
i = j;
break;
}
--j;
}
if (i == n) {
break;
}
if (j == i) {
auto sub = word.substr(i, 1);
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
tokens.push_back(vocab.token_to_id.at(sub));
} else {
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
}
++i;
}
}
}
return tokens;
}
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab) {
printf("%s: loading vocab from '%s'\n", __func__, fname.c_str());
vocab.token_to_id = ::json_parse(fname);
for (const auto & kv : vocab.token_to_id) {
vocab.id_to_token[kv.second] = kv.first;
}
printf("%s: vocab size = %d\n", __func__, (int) vocab.token_to_id.size());
// print the vocabulary
//for (auto kv : vocab.token_to_id) {
// printf("'%s' -> %d\n", kv.first.data(), kv.second);
//}
return true;
}
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab & vocab,
const float * logits,
int top_k,
double top_p,
double temp,
std::mt19937 & rng) {
int n_logits = vocab.id_to_token.size();
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
logits_id.reserve(n_logits);
{
const double scale = 1.0/temp;
for (int i = 0; i < n_logits; ++i) {
logits_id.push_back(std::make_pair(logits[i]*scale, i));
}
}
// find the top K tokens
std::partial_sort(
logits_id.begin(),
logits_id.begin() + top_k, logits_id.end(),
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
return a.first > b.first;
});
logits_id.resize(top_k);
double maxl = -INFINITY;
for (const auto & kv : logits_id) {
maxl = std::max(maxl, kv.first);
}
// compute probs for the top K tokens
std::vector<double> probs;
probs.reserve(logits_id.size());
double sum = 0.0;
for (const auto & kv : logits_id) {
double p = exp(kv.first - maxl);
probs.push_back(p);
sum += p;
}
// normalize the probs
for (auto & p : probs) {
p /= sum;
}
if (top_p < 1.0f) {
double cumsum = 0.0f;
for (int i = 0; i < top_k; i++) {
cumsum += probs[i];
if (cumsum >= top_p) {
top_k = i + 1;
probs.resize(top_k);
logits_id.resize(top_k);
break;
}
}
cumsum = 1.0/cumsum;
for (int i = 0; i < (int) probs.size(); i++) {
probs[i] *= cumsum;
}
}
//printf("\n");
//for (int i = 0; i < (int) probs.size(); i++) {
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
//}
//exit(0);
std::discrete_distribution<> dist(probs.begin(), probs.end());
int idx = dist(rng);
return logits_id[idx].second;
}

83
utils.h Normal file
View File

@ -0,0 +1,83 @@
// Various helper functions and utilities
#pragma once
#include <string>
#include <map>
#include <vector>
#include <random>
#include <thread>
//
// CLI argument parsing
//
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 200; // new tokens to predict
// sampling parameters
int32_t top_k = 40;
float top_p = 0.9f;
float temp = 0.9f;
int32_t n_batch = 8; // batch size for prompt processing
std::string model = "models/gpt-2-117M/ggml-model.bin"; // model path
std::string prompt;
};
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng);
//
// Vocab utils
//
struct gpt_vocab {
using id = int32_t;
using token = std::string;
std::map<token, id> token_to_id;
std::map<id, token> id_to_token;
};
void replace(std::string & str, const std::string & needle, const std::string & replacement);
// poor-man's JSON parsing
std::map<std::string, int32_t> json_parse(const std::string & fname);
// split text into tokens
//
// ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
//
// Regex (Python):
// r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
//
// Regex (C++):
// R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
//
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
// load the tokens from encoder.json
bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
// sample next token given probabilities for each embedding
//
// - consider only the top K tokens
// - from them, consider only the top tokens with cumulative probability > P
//
// TODO: not sure if this implementation is correct
// TODO: temperature is not implemented
//
gpt_vocab::id gpt_sample_top_k_top_p(
const gpt_vocab & vocab,
const float * logits,
int top_k,
double top_p,
double temp,
std::mt19937 & rng);