mirror of
https://github.com/nomic-ai/gpt4all
synced 2024-11-08 07:10:32 +00:00
feat: adamw, fix training, log gradients
This commit is contained in:
parent
c68311810a
commit
32357c920f
84
train.py
84
train.py
@ -1,5 +1,5 @@
|
||||
import os
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, AdamW, get_scheduler
|
||||
from transformers.trainer_pt_utils import get_parameter_names
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -11,6 +11,7 @@ from peft import get_peft_model, LoraConfig, TaskType
|
||||
from data import load_data
|
||||
from torchmetrics import MeanMetric
|
||||
from tqdm import tqdm
|
||||
import wandb
|
||||
|
||||
|
||||
def format_metrics(metrics, split, prefix=""):
|
||||
@ -20,17 +21,12 @@ def format_metrics(metrics, split, prefix=""):
|
||||
return log
|
||||
|
||||
|
||||
def evaluate(config, model, val_dataloader):
|
||||
def evaluate(model, val_dataloader):
|
||||
model.eval()
|
||||
val_loss = MeanMetric().to(model.device)
|
||||
|
||||
with torch.no_grad():
|
||||
for i, batch in enumerate(
|
||||
tqdm(val_dataloader),
|
||||
):
|
||||
if i == config["eval_steps"]:
|
||||
break
|
||||
|
||||
for batch in tqdm(val_dataloader):
|
||||
loss = model(**batch).loss
|
||||
|
||||
loss_values = accelerator.gather_for_metrics({"loss": loss.detach()})
|
||||
@ -49,8 +45,7 @@ def train(accelerator, config):
|
||||
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_name'])
|
||||
# llama has no pad token, set it to new token
|
||||
if tokenizer.pad_token is None:
|
||||
# these tokens are already in the vocab, just not mapped correctly
|
||||
added_tokens = tokenizer.add_special_tokens({"bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>"})
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
|
||||
with accelerator.main_process_first():
|
||||
@ -61,10 +56,6 @@ def train(accelerator, config):
|
||||
model = AutoModelForCausalLM.from_pretrained(config["model_name"],
|
||||
use_cache=False if checkpoint else True,
|
||||
trust_remote_code=True)
|
||||
|
||||
if added_tokens > 0:
|
||||
model.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
if checkpoint:
|
||||
model.gradient_checkpointing_enable()
|
||||
|
||||
@ -77,19 +68,55 @@ def train(accelerator, config):
|
||||
model.print_trainable_parameters()
|
||||
|
||||
optimizer_cls = (
|
||||
torch.optim.AdamW
|
||||
AdamW
|
||||
if accelerator.state.deepspeed_plugin is None
|
||||
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
||||
else DummyOptim
|
||||
)
|
||||
|
||||
no_decay = ["bias", "LayerNorm.weight"]
|
||||
optimizer_grouped_parameters = [
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
||||
"weight_decay": config["weight_decay"],
|
||||
},
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.0,
|
||||
},
|
||||
]
|
||||
|
||||
# karpathy doesn't decay embeddding, maybe we should exclude
|
||||
# https://github.com/karpathy/minGPT/commit/bbbdac74fa9b2e55574d70056163ffbae42310c1#diff-2075fa9c224b395be5bda85544dd36572b59c76c54562819eadadbf268602834R157s
|
||||
optimizer = optimizer_cls(model.parameters(), lr=config["lr"])
|
||||
optimizer = optimizer_cls(optimizer_grouped_parameters, lr=config["lr"])
|
||||
|
||||
# scheduler defined in Deepspeed config
|
||||
scheduler = DummyScheduler(
|
||||
optimizer, warmup_num_steps=config["warmup_steps"],
|
||||
if accelerator.state.deepspeed_plugin is not None:
|
||||
gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[
|
||||
"gradient_accumulation_steps"
|
||||
]
|
||||
|
||||
# decay to min_lr instead of 0
|
||||
lr_ratio = config["min_lr"] / config["lr"]
|
||||
accelerator.print(f"Len of train_dataloader: {len(train_dataloader)}")
|
||||
total_num_steps = (len(train_dataloader) / gradient_accumulation_steps) * config["num_epochs"]
|
||||
# instead of decaying to zero, decay to ratio of min_lr / lr
|
||||
total_num_steps += int(total_num_steps * lr_ratio) + config["warmup_steps"]
|
||||
accelerator.print(f"Total training steps: {total_num_steps}")
|
||||
|
||||
# Creates Dummy Scheduler if `scheduler` was spcified in the config file else creates `args.lr_scheduler_type` Scheduler
|
||||
if (
|
||||
accelerator.state.deepspeed_plugin is None
|
||||
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
||||
):
|
||||
scheduler = get_scheduler(
|
||||
name="cosine",
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=config["warmup_steps"] * accelerator.num_processes,
|
||||
num_training_steps=total_num_steps * accelerator.num_processes,
|
||||
)
|
||||
else:
|
||||
scheduler = DummyScheduler(
|
||||
optimizer, total_num_steps=config["warmup_steps"], warmup_num_steps=config["warmup_steps"]
|
||||
)
|
||||
|
||||
model, optimizer, train_dataloader, val_dataloader, scheduler = accelerator.prepare(
|
||||
@ -108,14 +135,13 @@ def train(accelerator, config):
|
||||
accelerator.skip_first_batches(train_dataloader, resume_step)
|
||||
accelerator.print(f"Resuming from step {resume_step}")
|
||||
|
||||
train_loss = MeanMetric().to(model.device)
|
||||
|
||||
if accelerator.state.deepspeed_plugin is not None:
|
||||
gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[
|
||||
"gradient_accumulation_steps"
|
||||
]
|
||||
# log gradients
|
||||
if accelerator.is_local_main_process and config["wandb"]:
|
||||
wandb.watch(model, log_freq=config["log_grads_every"])
|
||||
|
||||
for epoch in range(config["num_epochs"]):
|
||||
train_loss = MeanMetric().to(model.device)
|
||||
for step, batch in enumerate(tqdm(train_dataloader)):
|
||||
model.train()
|
||||
outputs = model(**batch)
|
||||
@ -139,9 +165,10 @@ def train(accelerator, config):
|
||||
train_loss.update(loss_values["loss"])
|
||||
|
||||
if step > 0 and step % config["save_every"] == 0:
|
||||
accelerator.save_state(f"{config['output_dir']}/step_{step}")
|
||||
curr_step = step + epoch * len(train_dataloader)
|
||||
accelerator.save_state(f"{config['output_dir']}/step_{curr_step}")
|
||||
|
||||
if step > 0 and step % config["eval_every"] == 0:
|
||||
if step > 0 and (step % config["eval_every"] == 0 or step == len(train_dataloader) - 1):
|
||||
val_loss = evaluate(config, model, val_dataloader)
|
||||
|
||||
log_train = {
|
||||
@ -166,7 +193,7 @@ def train(accelerator, config):
|
||||
accelerator.wait_for_everyone()
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
if accelerator.is_main_process:
|
||||
unwrapped_model.push_to_hub(config["save_name"] + "_first_epoch", private=True)
|
||||
unwrapped_model.push_to_hub(config["save_name"] + f"-epoch_{epoch}", private=True)
|
||||
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
@ -178,9 +205,6 @@ def train(accelerator, config):
|
||||
state_dict=accelerator.get_state_dict(model),
|
||||
)
|
||||
|
||||
if accelerator.is_main_process:
|
||||
unwrapped_model.push_to_hub(config["save_name"], private=True)
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user