Merge branch 'train' of github.com:nomic-ai/gpt4all into train

This commit is contained in:
Zach Nussbaum 2023-03-27 17:39:39 +00:00
commit 29cb9d700a
6 changed files with 73 additions and 53 deletions

2
.gitignore vendored
View File

@ -1,6 +1,6 @@
*.jsonl
*tar.gz
ckpts/
ckpts**
wandb
# Byte-compiled / optimized / DLL files
__pycache__/

View File

@ -6,8 +6,10 @@ import jsonlines
import pandas as pd
prompt_generation_dir = "prompts-reponses"
prompt_generation_dir = "raw_data_sanity_cleaned_without_p3/"
for file in glob.glob(os.path.join(prompt_generation_dir, "*.jsonl")):
if "clean.jsonl" in file:
continue
data = []
print(file)
with open(file) as f:
@ -67,5 +69,5 @@ for file in glob.glob(os.path.join(prompt_generation_dir, "*.jsonl")):
print(f"Removed {prev_len - curr_len} rows")
clean_name = file.split(".jsonl")[0] + "_clean.jsonl"
print(f"writing to {clean_name}")
print(f"writing to {curr_len} rows to {clean_name}")
df.to_json(clean_name, orient="records", lines=True)

View File

@ -2,27 +2,29 @@
model_name: "zpn/llama-7b"
tokenizer_name: "zpn/llama-7b"
gradient_checkpointing: true
save_name: "nomic-ai/vicuna-full-multi-turn"
# dataset
streaming: false
num_proc: 64
dataset_path: "data.jsonl"
max_length: 512
dataset_path: "data_multiturn"
max_length: 1024
batch_size: 32
# train dynamics
lr: 5.0e-5
eval_every: 2000
eval_every: 800
eval_steps: 100
save_every: 2000
output_dir: "ckpts/llama-7b"
save_every: 800
output_dir: "ckpts/llama-7b-full-multi"
checkpoint: null
lora: false
warmup_steps: 100
num_epochs: 2
# logging
wandb: false
wandb_entity: zanussbaum
wandb_project: llama
wandb: true
wandb_entity: vicuna
wandb_project_name: vicuna
seed: 42

View File

@ -2,12 +2,12 @@
model_name: "zpn/llama-7b"
tokenizer_name: "zpn/llama-7b"
gradient_checkpointing: false
save_name: "zpn/vicuna-lora"
save_name: "nomic-ai/vicuna-lora-multi-turn"
# dataset
streaming: false
num_proc: 64
dataset_path: "data"
dataset_path: "data_multiturn"
max_length: 1024
batch_size: 4
@ -16,10 +16,11 @@ lr: 5.0e-5
eval_every: 2000
eval_steps: 100
save_every: 2000
output_dir: "ckpts/llama-7b"
output_dir: "ckpts/llama-7b-lora-multi"
checkpoint: null
lora: true
warmup_steps: 100
num_epochs: 2
# logging
wandb: true

18
data.py
View File

@ -1,6 +1,6 @@
import glob
import torch
from datasets import load_dataset
from datasets import load_dataset, concatenate_datasets
import os
from torch.utils.data import DataLoader
from transformers import DefaultDataCollator
@ -20,7 +20,7 @@ def tokenize_inputs(config, tokenizer, examples):
# plus one since we remove bos from response
# but we subtract one since we want to add eos token
remaining_tokens = max_length - input_len - len(newline_tokens)
remaining_tokens = max_length - input_len - len(newline_tokens) + 1
# remove bos
target_tokens = tokenizer(response, truncation=True, max_length=remaining_tokens, return_tensors="pt")["input_ids"].squeeze()[1:]
@ -31,8 +31,10 @@ def tokenize_inputs(config, tokenizer, examples):
# add target tokens, remove bos
input_ids[i, newline_plus_inputs: newline_plus_inputs + len(target_tokens)] = target_tokens
# add eos token, enforce stopping
input_ids[i, newline_plus_inputs + len(target_tokens)] = tokenizer.eos_token_id
# add eos token, enforce stopping if we don't truncate
# we don't want long code to stop generating if truncated during training
if newline_plus_inputs + len(target_tokens) < max_length:
input_ids[i, newline_plus_inputs + len(target_tokens)] = tokenizer.eos_token_id
labels = input_ids[i].clone()
labels[: newline_plus_inputs] = -100
@ -51,7 +53,6 @@ def tokenize_inputs(config, tokenizer, examples):
return out
def load_data(config, tokenizer):
dataset_path = config["dataset_path"]
@ -62,16 +63,21 @@ def load_data(config, tokenizer):
else:
files = [dataset_path]
print(f"Reading files {files}")
dataset = load_dataset("json", data_files=files, split="train")
else:
dataset = load_dataset(dataset_path)
uuids = load_dataset("json", data_files="watermark.jsonl", split="train")
dataset = dataset.train_test_split(test_size=.05, seed=config["seed"])
train_dataset, val_dataset = dataset["train"], dataset["test"]
train_dataset = concatenate_datasets([train_dataset, uuids])
train_dataset = train_dataset.shuffle(seed=config["seed"])
if config["streaming"] is False:
kwargs = {"num_proc": config["num_proc"]}
else:

View File

@ -55,8 +55,8 @@ def train(accelerator, config):
with accelerator.main_process_first():
train_dataloader, val_dataloader = load_data(config, tokenizer)
checkpoint = config["gradient_checkpointing"]
model = AutoModelForCausalLM.from_pretrained(config["model_name"],
use_cache=False if checkpoint else True,
@ -115,48 +115,56 @@ def train(accelerator, config):
"gradient_accumulation_steps"
]
for step, batch in enumerate(tqdm(train_dataloader)):
model.train()
outputs = model(**batch)
loss = outputs.loss
loss = loss / gradient_accumulation_steps
for epoch in range(config["num_epochs"]):
for step, batch in enumerate(tqdm(train_dataloader)):
model.train()
outputs = model(**batch)
loss = outputs.loss
loss = loss / gradient_accumulation_steps
accelerator.backward(loss)
accelerator.backward(loss)
# log LR in case something weird happens
if step > 0 and step % (config["eval_every"] // 10) == 0:
if config["wandb"]:
accelerator.log({"lr": scheduler.get_last_lr()[0]}, step=step)
# log LR in case something weird happens
if step > 0 and step % (config["eval_every"] // 10) == 0:
if config["wandb"]:
accelerator.log({"lr": scheduler.get_last_lr()[0]}, step=step)
if (step + 1) % gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
if (step + 1) % gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
loss_values = accelerator.gather_for_metrics({"loss": loss.detach()})
train_loss.update(loss_values["loss"])
loss_values = accelerator.gather_for_metrics({"loss": loss.detach()})
train_loss.update(loss_values["loss"])
if step > 0 and step % config["save_every"] == 0:
accelerator.save_state(f"{config['output_dir']}/step_{step}")
if step > 0 and step % config["save_every"] == 0:
accelerator.save_state(f"{config['output_dir']}/step_{step}")
if step > 0 and step % config["eval_every"] == 0:
val_loss = evaluate(config, model, val_dataloader)
if step > 0 and step % config["eval_every"] == 0:
val_loss = evaluate(config, model, val_dataloader)
log_train = {
"train_loss": train_loss.compute()
log_train = {
"train_loss": train_loss.compute()
}
log_val = {
"val_loss": val_loss.compute()
}
log_val = {
"val_loss": val_loss.compute()
}
if config["wandb"]:
accelerator.log({**log_train, **log_val}, step=step)
if config["wandb"]:
accelerator.log({**log_train, **log_val}, step=step)
accelerator.print(f"Current LR: {scheduler.get_last_lr()[0]}")
accelerator.print(format_metrics(log_train, "train", f" step {step} "))
accelerator.print(format_metrics(log_val, "val", f" step {step} "))
accelerator.print(f"Current LR: {scheduler.get_last_lr()[0]}")
accelerator.print(format_metrics(log_train, "train", f" step {step} "))
accelerator.print(format_metrics(log_val, "val", f" step {step} "))
train_loss.reset()
train_loss.reset()
accelerator.print(f"Epoch {epoch} finished")
accelerator.print(f"Pushing to HF hub")
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if accelerator.is_main_process:
unwrapped_model.push_to_hub(config["save_name"] + "_first_epoch", private=True)
accelerator.wait_for_everyone()
@ -168,7 +176,8 @@ def train(accelerator, config):
state_dict=accelerator.get_state_dict(model),
)
unwrapped_model.push_to_hub(config["save_name"], private=True)
if accelerator.is_main_process:
unwrapped_model.push_to_hub(config["save_name"], private=True)
accelerator.end_training()