2023-09-29 17:39:35 +00:00
|
|
|
#!/usr/bin/env python3
|
2023-09-25 17:22:52 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import json
|
|
|
|
import struct
|
|
|
|
import sys
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import gguf
|
|
|
|
import numpy as np
|
2023-09-29 13:59:11 +00:00
|
|
|
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
2023-09-25 17:22:52 +00:00
|
|
|
|
|
|
|
|
|
|
|
if not 2 <= len(sys.argv) < 4:
|
2023-09-28 19:32:43 +00:00
|
|
|
print("Usage: {} dir-model [ftype]\n".format(Path(__file__).name))
|
2023-09-25 17:22:52 +00:00
|
|
|
print(" ftype == 0 -> float32")
|
|
|
|
print(" ftype == 1 -> float16")
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
# output in the same directory as the model
|
|
|
|
dir_model = Path(sys.argv[1])
|
|
|
|
|
|
|
|
with open(dir_model / "vocab.txt", encoding="utf-8") as f:
|
|
|
|
vocab = f.readlines()
|
|
|
|
|
|
|
|
# possible data types
|
|
|
|
# ftype == 0 -> float32
|
|
|
|
# ftype == 1 -> float16
|
|
|
|
#
|
|
|
|
# map from ftype to string
|
|
|
|
ftype_str = ["f32", "f16"]
|
2023-09-28 19:32:43 +00:00
|
|
|
|
2023-09-25 17:22:52 +00:00
|
|
|
ftype = 1
|
|
|
|
if len(sys.argv) > 2:
|
|
|
|
ftype = int(sys.argv[2])
|
|
|
|
if ftype < 0 or ftype > 1:
|
|
|
|
print("Invalid ftype: " + str(ftype))
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
fname_out = dir_model / ("ggml-model-" + ftype_str[ftype] + ".gguf")
|
|
|
|
|
|
|
|
|
|
|
|
ARCH = gguf.MODEL_ARCH.BERT
|
|
|
|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
|
|
|
|
|
|
|
print("gguf: get model metadata")
|
|
|
|
|
2023-10-13 18:16:51 +00:00
|
|
|
config = AutoConfig.from_pretrained(dir_model)
|
2023-09-25 17:22:52 +00:00
|
|
|
|
2023-09-29 13:59:11 +00:00
|
|
|
block_count = config.num_hidden_layers
|
2023-09-25 17:22:52 +00:00
|
|
|
gguf_writer.add_name("BERT")
|
2023-09-29 13:59:11 +00:00
|
|
|
gguf_writer.add_context_length(config.max_position_embeddings)
|
|
|
|
gguf_writer.add_embedding_length(config.hidden_size)
|
|
|
|
gguf_writer.add_feed_forward_length(config.intermediate_size)
|
2023-09-25 17:22:52 +00:00
|
|
|
gguf_writer.add_block_count(block_count)
|
2023-09-29 13:59:11 +00:00
|
|
|
gguf_writer.add_head_count(config.num_attention_heads)
|
2023-09-25 17:22:52 +00:00
|
|
|
gguf_writer.add_file_type(ftype)
|
|
|
|
|
|
|
|
print("gguf: get tokenizer metadata")
|
|
|
|
|
|
|
|
try:
|
|
|
|
with open(dir_model / "tokenizer.json", encoding="utf-8") as f:
|
|
|
|
tokenizer_json = json.load(f)
|
|
|
|
except FileNotFoundError as e:
|
|
|
|
print(f'Error: Missing {e.filename!r}', file=sys.stderr)
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
print("gguf: get wordpiece tokenizer vocab")
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
|
|
|
print(tokenizer.encode('I believe the meaning of life is'))
|
|
|
|
|
|
|
|
tokens: list[bytearray] = []
|
|
|
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
|
|
|
|
|
|
|
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
|
|
|
# This causes downstream issues with mismatched tensor sizes when running the inference
|
2023-09-29 13:59:11 +00:00
|
|
|
for i in range(config.vocab_size):
|
2023-09-25 17:22:52 +00:00
|
|
|
try:
|
|
|
|
text = reverse_vocab[i]
|
|
|
|
except KeyError:
|
|
|
|
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
|
|
|
pad_token = f"[PAD{i}]".encode("utf8")
|
|
|
|
text = bytearray(pad_token)
|
|
|
|
|
|
|
|
tokens.append(text)
|
|
|
|
|
|
|
|
gguf_writer.add_tokenizer_model("bert") # wordpiece
|
|
|
|
gguf_writer.add_token_list(tokens)
|
|
|
|
|
|
|
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
|
|
|
|
special_vocab.add_to_gguf(gguf_writer)
|
|
|
|
|
|
|
|
print("gguf: get tensor metadata")
|
|
|
|
|
2023-09-29 13:59:11 +00:00
|
|
|
model = AutoModel.from_pretrained(dir_model, config=config, low_cpu_mem_usage=True)
|
|
|
|
print(model)
|
|
|
|
|
2023-09-25 17:22:52 +00:00
|
|
|
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
|
|
|
|
|
|
|
|
list_vars = model.state_dict()
|
|
|
|
for name in list_vars.keys():
|
|
|
|
print(name, list_vars[name].shape, list_vars[name].dtype)
|
|
|
|
|
|
|
|
for name in list_vars.keys():
|
|
|
|
data = list_vars[name].squeeze().numpy()
|
|
|
|
if name in ['embeddings.position_ids', 'pooler.dense.weight', 'pooler.dense.bias']:
|
|
|
|
continue
|
|
|
|
print("Processing variable:", name, "with shape:", data.shape)
|
|
|
|
|
|
|
|
n_dims = len(data.shape)
|
|
|
|
|
|
|
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
|
|
|
if ftype == 1 and name[-7:] == ".weight" and n_dims == 2:
|
|
|
|
print(" Converting to float16")
|
|
|
|
data = data.astype(np.float16)
|
|
|
|
l_type = 1
|
|
|
|
else:
|
|
|
|
l_type = 0
|
|
|
|
|
|
|
|
# map tensor names
|
|
|
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
|
|
|
if new_name is None:
|
|
|
|
print("Can not map tensor '" + name + "'")
|
|
|
|
sys.exit()
|
|
|
|
|
|
|
|
gguf_writer.add_tensor(new_name, data)
|
|
|
|
|
|
|
|
|
|
|
|
print("gguf: write header")
|
|
|
|
gguf_writer.write_header_to_file()
|
|
|
|
print("gguf: write metadata")
|
|
|
|
gguf_writer.write_kv_data_to_file()
|
|
|
|
print("gguf: write tensors")
|
|
|
|
gguf_writer.write_tensors_to_file()
|
|
|
|
|
|
|
|
gguf_writer.close()
|
|
|
|
|
|
|
|
print(f"gguf: model successfully exported to '{fname_out}'")
|
|
|
|
print()
|