You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
gods/trees/redblacktree/redblacktree.go

667 lines
16 KiB
Go

/*
Copyright (c) 2015, Emir Pasic
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Package redblacktree implements a red-black tree.
//
// Used by TreeSet and TreeMap.
//
// Structure is not thread safe.
//
// References: http://en.wikipedia.org/wiki/Red%E2%80%93black_tree
package redblacktree
import (
"fmt"
"github.com/emirpasic/gods/containers"
"github.com/emirpasic/gods/stacks/linkedliststack"
"github.com/emirpasic/gods/trees"
"github.com/emirpasic/gods/utils"
)
func assertInterfaceImplementation() {
var _ trees.Tree = (*Tree)(nil)
var _ containers.ReverseIteratorWithKey = (*Iterator)(nil)
}
type color bool
const (
black, red color = true, false
)
// Tree holds elements of the red-black tree
type Tree struct {
Root *Node
size int
Comparator utils.Comparator
}
// Node is a single element within the tree
type Node struct {
Key interface{}
Value interface{}
color color
Left *Node
Right *Node
Parent *Node
}
// NewWith instantiates a red-black tree with the custom comparator.
func NewWith(comparator utils.Comparator) *Tree {
return &Tree{Comparator: comparator}
}
// NewWithIntComparator instantiates a red-black tree with the IntComparator, i.e. keys are of type int.
func NewWithIntComparator() *Tree {
return &Tree{Comparator: utils.IntComparator}
}
// NewWithStringComparator instantiates a red-black tree with the StringComparator, i.e. keys are of type string.
func NewWithStringComparator() *Tree {
return &Tree{Comparator: utils.StringComparator}
}
// Put inserts node into the tree.
// Key should adhere to the comparator's type assertion, otherwise method panics.
func (tree *Tree) Put(key interface{}, value interface{}) {
insertedNode := &Node{Key: key, Value: value, color: red}
if tree.Root == nil {
tree.Root = insertedNode
} else {
node := tree.Root
loop := true
for loop {
compare := tree.Comparator(key, node.Key)
switch {
case compare == 0:
node.Value = value
return
case compare < 0:
if node.Left == nil {
node.Left = insertedNode
loop = false
} else {
node = node.Left
}
case compare > 0:
if node.Right == nil {
node.Right = insertedNode
loop = false
} else {
node = node.Right
}
}
}
insertedNode.Parent = node
}
tree.insertCase1(insertedNode)
tree.size++
}
// Get searches the node in the tree by key and returns its value or nil if key is not found in tree.
// Second return parameter is true if key was found, otherwise false.
// Key should adhere to the comparator's type assertion, otherwise method panics.
func (tree *Tree) Get(key interface{}) (value interface{}, found bool) {
node := tree.lookup(key)
if node != nil {
return node.Value, true
}
return nil, false
}
// Remove remove the node from the tree by key.
// Key should adhere to the comparator's type assertion, otherwise method panics.
func (tree *Tree) Remove(key interface{}) {
var child *Node
node := tree.lookup(key)
if node == nil {
return
}
if node.Left != nil && node.Right != nil {
pred := node.Left.maximumNode()
node.Key = pred.Key
node.Value = pred.Value
node = pred
}
if node.Left == nil || node.Right == nil {
if node.Right == nil {
child = node.Left
} else {
child = node.Right
}
if node.color == black {
node.color = nodeColor(child)
tree.deleteCase1(node)
}
tree.replaceNode(node, child)
if node.Parent == nil && child != nil {
child.color = black
}
}
tree.size--
}
// Empty returns true if tree does not contain any nodes
func (tree *Tree) Empty() bool {
return tree.size == 0
}
// Size returns number of nodes in the tree.
func (tree *Tree) Size() int {
return tree.size
}
// Keys returns all keys in-order
func (tree *Tree) Keys() []interface{} {
keys := make([]interface{}, tree.size)
for i, node := range tree.inOrder() {
keys[i] = node.Key
}
return keys
}
// Values returns all values in-order based on the key.
func (tree *Tree) Values() []interface{} {
values := make([]interface{}, tree.size)
for i, node := range tree.inOrder() {
values[i] = node.Value
}
return values
}
// Left returns the left-most (min) node or nil if tree is empty.
func (tree *Tree) Left() *Node {
var parent *Node
current := tree.Root
for current != nil {
parent = current
current = current.Left
}
return parent
}
// Right returns the right-most (max) node or nil if tree is empty.
func (tree *Tree) Right() *Node {
var parent *Node
current := tree.Root
for current != nil {
parent = current
current = current.Right
}
return parent
}
// Floor Finds floor node of the input key, return the floor node or nil if no ceiling is found.
// Second return parameter is true if floor was found, otherwise false.
//
// Floor node is defined as the largest node that is smaller than or equal to the given node.
// A floor node may not be found, either because the tree is empty, or because
// all nodes in the tree is larger than the given node.
//
// Key should adhere to the comparator's type assertion, otherwise method panics.
func (tree *Tree) Floor(key interface{}) (floor *Node, found bool) {
found = false
node := tree.Root
for node != nil {
compare := tree.Comparator(key, node.Key)
switch {
case compare == 0:
return node, true
case compare < 0:
node = node.Left
case compare > 0:
floor, found = node, true
node = node.Right
}
}
if found {
return floor, true
}
return nil, false
}
// Ceiling finds ceiling node of the input key, return the ceiling node or nil if no ceiling is found.
// Second return parameter is true if ceiling was found, otherwise false.
//
// Ceiling node is defined as the smallest node that is larger than or equal to the given node.
// A ceiling node may not be found, either because the tree is empty, or because
// all nodes in the tree is smaller than the given node.
//
// Key should adhere to the comparator's type assertion, otherwise method panics.
func (tree *Tree) Ceiling(key interface{}) (ceiling *Node, found bool) {
found = false
node := tree.Root
for node != nil {
compare := tree.Comparator(key, node.Key)
switch {
case compare == 0:
return node, true
case compare < 0:
ceiling, found = node, true
node = node.Left
case compare > 0:
node = node.Right
}
}
if found {
return ceiling, true
}
return nil, false
}
// Clear removes all nodes from the tree.
func (tree *Tree) Clear() {
tree.Root = nil
tree.size = 0
}
// Iterator holding the iterator's state
type Iterator struct {
tree *Tree
node *Node
}
// Iterator returns a stateful iterator whose elements are key/value pairs.
func (tree *Tree) Iterator() Iterator {
return Iterator{tree: tree, node: nil}
}
// Next moves the iterator to the next element and returns true if there was a next element in the container.
// If Next() returns true, then next element's key and value can be retrieved by Key() and Value().
// If Next() was called for the first time, then it will point the iterator to the first element if it exists.
// Modifies the state of the iterator.
func (iterator *Iterator) Next() bool {
if iterator.node == nil {
iterator.node = iterator.tree.Left()
return iterator.node != nil
}
if iterator.node.Right != nil {
iterator.node = iterator.node.Right
for iterator.node.Left != nil {
iterator.node = iterator.node.Left
}
return true
}
if iterator.node.Parent != nil {
node := iterator.node
for iterator.node.Parent != nil {
iterator.node = iterator.node.Parent
if iterator.tree.Comparator(node.Key, iterator.node.Key) <= 0 {
return true
}
}
iterator.node = node // fix: if parent didn't satisfy the comparator criteria
}
return false
}
// Prev moves the iterator to the previous element and returns true if there was a previous element in the container.
// If Prev() returns true, then previous element's index and value can be retrieved by Key() and Value().
// Modifies the state of the iterator.
func (iterator *Iterator) Prev() bool {
if iterator.node == nil {
return false
}
if iterator.node.Left != nil {
iterator.node = iterator.node.Left
for iterator.node.Right != nil {
iterator.node = iterator.node.Right
}
return true
}
if iterator.node.Parent != nil {
node := iterator.node
for iterator.node.Parent != nil {
iterator.node = iterator.node.Parent
if iterator.tree.Comparator(node.Key, iterator.node.Key) >= 0 {
return true
}
}
iterator.node = node // fix: if parent didn't satisfy the comparator criteria
}
return false
}
// Value returns the current element's value.
// Does not modify the state of the iterator.
func (iterator *Iterator) Value() interface{} {
return iterator.node.Value
}
// Key returns the current element's key.
// Does not modify the state of the iterator.
func (iterator *Iterator) Key() interface{} {
return iterator.node.Key
}
// Reset sets the iterator to the initial state.
// Call Next() to fetch the first element if any.
func (iterator *Iterator) Reset() {
iterator.node = nil
}
// Last moves the iterator to the last element and returns true if there was a last element in the container.
// If Last() returns true, then last element's index and value can be retrieved by Key() and Value().
// Modifies the state of the iterator.
func (iterator *Iterator) Last() bool {
iterator.node = iterator.tree.Right()
return iterator.node != nil
}
// String returns a string representation of container
func (tree *Tree) String() string {
str := "RedBlackTree\n"
if !tree.Empty() {
output(tree.Root, "", true, &str)
}
return str
}
func (node *Node) String() string {
return fmt.Sprintf("%v", node.Key)
}
// Returns all nodes in order
func (tree *Tree) inOrder() []*Node {
nodes := make([]*Node, tree.size)
if tree.size > 0 {
current := tree.Root
stack := linkedliststack.New()
done := false
count := 0
for !done {
if current != nil {
stack.Push(current)
current = current.Left
} else {
if !stack.Empty() {
currentPop, _ := stack.Pop()
current = currentPop.(*Node)
nodes[count] = current
count++
current = current.Right
} else {
done = true
}
}
}
}
return nodes
}
// String returns a string representation of container
func output(node *Node, prefix string, isTail bool, str *string) {
if node.Right != nil {
newPrefix := prefix
if isTail {
newPrefix += "│ "
} else {
newPrefix += " "
}
output(node.Right, newPrefix, false, str)
}
*str += prefix
if isTail {
*str += "└── "
} else {
*str += "┌── "
}
*str += node.String() + "\n"
if node.Left != nil {
newPrefix := prefix
if isTail {
newPrefix += " "
} else {
newPrefix += "│ "
}
output(node.Left, newPrefix, true, str)
}
}
func (tree *Tree) lookup(key interface{}) *Node {
node := tree.Root
for node != nil {
compare := tree.Comparator(key, node.Key)
switch {
case compare == 0:
return node
case compare < 0:
node = node.Left
case compare > 0:
node = node.Right
}
}
return nil
}
func (node *Node) grandparent() *Node {
if node != nil && node.Parent != nil {
return node.Parent.Parent
}
return nil
}
func (node *Node) uncle() *Node {
if node == nil || node.Parent == nil || node.Parent.Parent == nil {
return nil
}
return node.Parent.sibling()
}
func (node *Node) sibling() *Node {
if node == nil || node.Parent == nil {
return nil
}
if node == node.Parent.Left {
return node.Parent.Right
}
return node.Parent.Left
}
func (tree *Tree) rotateLeft(node *Node) {
right := node.Right
tree.replaceNode(node, right)
node.Right = right.Left
if right.Left != nil {
right.Left.Parent = node
}
right.Left = node
node.Parent = right
}
func (tree *Tree) rotateRight(node *Node) {
left := node.Left
tree.replaceNode(node, left)
node.Left = left.Right
if left.Right != nil {
left.Right.Parent = node
}
left.Right = node
node.Parent = left
}
func (tree *Tree) replaceNode(old *Node, new *Node) {
if old.Parent == nil {
tree.Root = new
} else {
if old == old.Parent.Left {
old.Parent.Left = new
} else {
old.Parent.Right = new
}
}
if new != nil {
new.Parent = old.Parent
}
}
func (tree *Tree) insertCase1(node *Node) {
if node.Parent == nil {
node.color = black
} else {
tree.insertCase2(node)
}
}
func (tree *Tree) insertCase2(node *Node) {
if nodeColor(node.Parent) == black {
return
}
tree.insertCase3(node)
}
func (tree *Tree) insertCase3(node *Node) {
uncle := node.uncle()
if nodeColor(uncle) == red {
node.Parent.color = black
uncle.color = black
node.grandparent().color = red
tree.insertCase1(node.grandparent())
} else {
tree.insertCase4(node)
}
}
func (tree *Tree) insertCase4(node *Node) {
grandparent := node.grandparent()
if node == node.Parent.Right && node.Parent == grandparent.Left {
tree.rotateLeft(node.Parent)
node = node.Left
} else if node == node.Parent.Left && node.Parent == grandparent.Right {
tree.rotateRight(node.Parent)
node = node.Right
}
tree.insertCase5(node)
}
func (tree *Tree) insertCase5(node *Node) {
node.Parent.color = black
grandparent := node.grandparent()
grandparent.color = red
if node == node.Parent.Left && node.Parent == grandparent.Left {
tree.rotateRight(grandparent)
} else if node == node.Parent.Right && node.Parent == grandparent.Right {
tree.rotateLeft(grandparent)
}
}
func (node *Node) maximumNode() *Node {
if node == nil {
return nil
}
for node.Right != nil {
node = node.Right
}
return node
}
func (tree *Tree) deleteCase1(node *Node) {
if node.Parent == nil {
return
}
tree.deleteCase2(node)
}
func (tree *Tree) deleteCase2(node *Node) {
sibling := node.sibling()
if nodeColor(sibling) == red {
node.Parent.color = red
sibling.color = black
if node == node.Parent.Left {
tree.rotateLeft(node.Parent)
} else {
tree.rotateRight(node.Parent)
}
}
tree.deleteCase3(node)
}
func (tree *Tree) deleteCase3(node *Node) {
sibling := node.sibling()
if nodeColor(node.Parent) == black &&
nodeColor(sibling) == black &&
nodeColor(sibling.Left) == black &&
nodeColor(sibling.Right) == black {
sibling.color = red
tree.deleteCase1(node.Parent)
} else {
tree.deleteCase4(node)
}
}
func (tree *Tree) deleteCase4(node *Node) {
sibling := node.sibling()
if nodeColor(node.Parent) == red &&
nodeColor(sibling) == black &&
nodeColor(sibling.Left) == black &&
nodeColor(sibling.Right) == black {
sibling.color = red
node.Parent.color = black
} else {
tree.deleteCase5(node)
}
}
func (tree *Tree) deleteCase5(node *Node) {
sibling := node.sibling()
if node == node.Parent.Left &&
nodeColor(sibling) == black &&
nodeColor(sibling.Left) == red &&
nodeColor(sibling.Right) == black {
sibling.color = red
sibling.Left.color = black
tree.rotateRight(sibling)
} else if node == node.Parent.Right &&
nodeColor(sibling) == black &&
nodeColor(sibling.Right) == red &&
nodeColor(sibling.Left) == black {
sibling.color = red
sibling.Right.color = black
tree.rotateLeft(sibling)
}
tree.deleteCase6(node)
}
func (tree *Tree) deleteCase6(node *Node) {
sibling := node.sibling()
sibling.color = nodeColor(node.Parent)
node.Parent.color = black
if node == node.Parent.Left && nodeColor(sibling.Right) == red {
sibling.Right.color = black
tree.rotateLeft(node.Parent)
} else if nodeColor(sibling.Left) == red {
sibling.Left.color = black
tree.rotateRight(node.Parent)
}
}
func nodeColor(node *Node) color {
if node == nil {
return black
}
return node.color
}