gods/trees/btree/btree.go
2016-08-07 01:54:22 +02:00

578 lines
17 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (c) 2015, Emir Pasic. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package btree implements a B tree.
//
// According to Knuth's definition, a B-tree of order m is a tree which satisfies the following properties:
// - Every node has at most m children.
// - Every non-leaf node (except root) has at least ⌈m/2⌉ children.
// - The root has at least two children if it is not a leaf node.
// - A non-leaf node with k children contains k1 keys.
// - All leaves appear in the same level
//
// Structure is not thread safe.
//
// References: https://en.wikipedia.org/wiki/B-tree
package btree
import (
"bytes"
"fmt"
"github.com/emirpasic/gods/trees"
"github.com/emirpasic/gods/utils"
"strings"
)
func assertTreeImplementation() {
var _ trees.Tree = (*Tree)(nil)
}
// Tree holds elements of the B-tree
type Tree struct {
Root *Node // Root node
Comparator utils.Comparator // Key comparator
size int // Total number of keys in the tree
m int // order (maximum number of children)
}
// Node is a single element within the tree
type Node struct {
Parent *Node
Entries []*Entry // Contained keys in node
Children []*Node // Children nodes
}
// Entry represents the key-value pair contained within nodes
type Entry struct {
Key interface{}
Value interface{}
}
// NewWith instantiates a B-tree with the order (maximum number of children) and a custom key comparator.
func NewWith(order int, comparator utils.Comparator) *Tree {
if order < 3 {
panic("Invalid order, should be at least 3")
}
return &Tree{m: order, Comparator: comparator}
}
// NewWithIntComparator instantiates a B-tree with the order (maximum number of children) and the IntComparator, i.e. keys are of type int.
func NewWithIntComparator(order int) *Tree {
return NewWith(order, utils.IntComparator)
}
// NewWithStringComparator instantiates a B-tree with the order (maximum number of children) and the StringComparator, i.e. keys are of type string.
func NewWithStringComparator(order int) *Tree {
return NewWith(order, utils.StringComparator)
}
// Put inserts key-value pair node into the tree.
// If key already exists, then its value is updated with the new value.
// Key should adhere to the comparator's type assertion, otherwise method panics.
func (tree *Tree) Put(key interface{}, value interface{}) {
entry := &Entry{Key: key, Value: value}
if tree.Root == nil {
tree.Root = &Node{Entries: []*Entry{entry}, Children: []*Node{}}
tree.size++
return
}
if tree.insert(tree.Root, entry) {
tree.size++
}
}
// Get searches the node in the tree by key and returns its value or nil if key is not found in tree.
// Second return parameter is true if key was found, otherwise false.
// Key should adhere to the comparator's type assertion, otherwise method panics.
func (tree *Tree) Get(key interface{}) (value interface{}, found bool) {
node, index, found := tree.searchRecursively(tree.Root, key)
if found {
return node.Entries[index].Value, true
}
return nil, false
}
// Remove remove the node from the tree by key.
// Key should adhere to the comparator's type assertion, otherwise method panics.
func (tree *Tree) Remove(key interface{}) {
node, index, found := tree.searchRecursively(tree.Root, key)
if found {
tree.delete(node, index)
tree.size--
}
}
// Empty returns true if tree does not contain any nodes
func (tree *Tree) Empty() bool {
return tree.size == 0
}
// Size returns number of nodes in the tree.
func (tree *Tree) Size() int {
return tree.size
}
// Keys returns all keys in-order
func (tree *Tree) Keys() []interface{} {
keys := make([]interface{}, tree.size)
it := tree.Iterator()
for i := 0; it.Next(); i++ {
keys[i] = it.Key()
}
return keys
}
// Values returns all values in-order based on the key.
func (tree *Tree) Values() []interface{} {
values := make([]interface{}, tree.size)
it := tree.Iterator()
for i := 0; it.Next(); i++ {
values[i] = it.Value()
}
return values
}
// Clear removes all nodes from the tree.
func (tree *Tree) Clear() {
tree.Root = nil
tree.size = 0
}
// Height returns the height of the tree.
func (tree *Tree) Height() int {
return tree.Root.height()
}
// Left returns the left-most (min) node or nil if tree is empty.
func (tree *Tree) Left() *Node {
return tree.left(tree.Root)
}
// LeftKey returns the left-most (min) key or nil if tree is empty.
func (tree *Tree) LeftKey() interface{} {
if left := tree.Left(); left != nil {
return left.Entries[0].Key
}
return nil
}
// LeftValue returns the left-most value or nil if tree is empty.
func (tree *Tree) LeftValue() interface{} {
if left := tree.Left(); left != nil {
return left.Entries[0].Value
}
return nil
}
// Right returns the right-most (max) node or nil if tree is empty.
func (tree *Tree) Right() *Node {
return tree.right(tree.Root)
}
// RightKey returns the right-most (max) key or nil if tree is empty.
func (tree *Tree) RightKey() interface{} {
if right := tree.Right(); right != nil {
return right.Entries[len(right.Entries)-1].Key
}
return nil
}
// RightValue returns the right-most value or nil if tree is empty.
func (tree *Tree) RightValue() interface{} {
if right := tree.Right(); right != nil {
return right.Entries[len(right.Entries)-1].Value
}
return nil
}
// String returns a string representation of container (for debugging purposes)
func (tree *Tree) String() string {
var buffer bytes.Buffer
if _, err := buffer.WriteString("BTree\n"); err != nil {
}
if !tree.Empty() {
tree.output(&buffer, tree.Root, 0, true)
}
return buffer.String()
}
func (entry *Entry) String() string {
return fmt.Sprintf("%v", entry.Key)
}
func (tree *Tree) output(buffer *bytes.Buffer, node *Node, level int, isTail bool) {
for e := 0; e < len(node.Entries)+1; e++ {
if e < len(node.Children) {
tree.output(buffer, node.Children[e], level+1, true)
}
if e < len(node.Entries) {
if _, err := buffer.WriteString(strings.Repeat(" ", level)); err != nil {
}
if _, err := buffer.WriteString(fmt.Sprintf("%v", node.Entries[e].Key) + "\n"); err != nil {
}
}
}
}
func (node *Node) height() int {
height := 0
for ; node != nil; node = node.Children[0] {
height++
if len(node.Children) == 0 {
break
}
}
return height
}
func (tree *Tree) isLeaf(node *Node) bool {
return len(node.Children) == 0
}
func (tree *Tree) isFull(node *Node) bool {
return len(node.Entries) == tree.maxEntries()
}
func (tree *Tree) shouldSplit(node *Node) bool {
return len(node.Entries) > tree.maxEntries()
}
func (tree *Tree) maxChildren() int {
return tree.m
}
func (tree *Tree) minChildren() int {
return (tree.m + 1) / 2 // ceil(m/2)
}
func (tree *Tree) maxEntries() int {
return tree.maxChildren() - 1
}
func (tree *Tree) minEntries() int {
return tree.minChildren() - 1
}
func (tree *Tree) middle() int {
return (tree.m - 1) / 2 // "-1" to favor right nodes to have more keys when splitting
}
// search searches only within the single node among its entries
func (tree *Tree) search(node *Node, key interface{}) (index int, found bool) {
low, high := 0, len(node.Entries)-1
var mid int
for low <= high {
mid = (high + low) / 2
compare := tree.Comparator(key, node.Entries[mid].Key)
switch {
case compare > 0:
low = mid + 1
case compare < 0:
high = mid - 1
case compare == 0:
return mid, true
}
}
return low, false
}
// searchRecursively searches recursively down the tree starting at the startNode
func (tree *Tree) searchRecursively(startNode *Node, key interface{}) (node *Node, index int, found bool) {
if tree.Empty() {
return nil, -1, false
}
node = startNode
for {
index, found = tree.search(node, key)
if found {
return node, index, true
}
if tree.isLeaf(node) {
return nil, -1, false
}
node = node.Children[index]
}
}
func (tree *Tree) insert(node *Node, entry *Entry) (inserted bool) {
if tree.isLeaf(node) {
return tree.insertIntoLeaf(node, entry)
}
return tree.insertIntoInternal(node, entry)
}
func (tree *Tree) insertIntoLeaf(node *Node, entry *Entry) (inserted bool) {
insertPosition, found := tree.search(node, entry.Key)
if found {
node.Entries[insertPosition] = entry
return false
}
// Insert entry's key in the middle of the node
node.Entries = append(node.Entries, nil)
copy(node.Entries[insertPosition+1:], node.Entries[insertPosition:])
node.Entries[insertPosition] = entry
tree.split(node)
return true
}
func (tree *Tree) insertIntoInternal(node *Node, entry *Entry) (inserted bool) {
insertPosition, found := tree.search(node, entry.Key)
if found {
node.Entries[insertPosition] = entry
return false
}
return tree.insert(node.Children[insertPosition], entry)
}
func (tree *Tree) split(node *Node) {
if !tree.shouldSplit(node) {
return
}
if node == tree.Root {
tree.splitRoot()
return
}
tree.splitNonRoot(node)
}
func (tree *Tree) splitNonRoot(node *Node) {
middle := tree.middle()
parent := node.Parent
left := &Node{Entries: append([]*Entry(nil), node.Entries[:middle]...), Parent: parent}
right := &Node{Entries: append([]*Entry(nil), node.Entries[middle+1:]...), Parent: parent}
// Move children from the node to be split into left and right nodes
if !tree.isLeaf(node) {
left.Children = append([]*Node(nil), node.Children[:middle+1]...)
right.Children = append([]*Node(nil), node.Children[middle+1:]...)
setParent(left.Children, left)
setParent(right.Children, right)
}
insertPosition, _ := tree.search(parent, node.Entries[middle].Key)
// Insert middle key into parent
parent.Entries = append(parent.Entries, nil)
copy(parent.Entries[insertPosition+1:], parent.Entries[insertPosition:])
parent.Entries[insertPosition] = node.Entries[middle]
// Set child left of inserted key in parent to the created left node
parent.Children[insertPosition] = left
// Set child right of inserted key in parent to the created right node
parent.Children = append(parent.Children, nil)
copy(parent.Children[insertPosition+2:], parent.Children[insertPosition+1:])
parent.Children[insertPosition+1] = right
tree.split(parent)
}
func (tree *Tree) splitRoot() {
middle := tree.middle()
left := &Node{Entries: append([]*Entry(nil), tree.Root.Entries[:middle]...)}
right := &Node{Entries: append([]*Entry(nil), tree.Root.Entries[middle+1:]...)}
// Move children from the node to be split into left and right nodes
if !tree.isLeaf(tree.Root) {
left.Children = append([]*Node(nil), tree.Root.Children[:middle+1]...)
right.Children = append([]*Node(nil), tree.Root.Children[middle+1:]...)
setParent(left.Children, left)
setParent(right.Children, right)
}
// Root is a node with one entry and two children (left and right)
newRoot := &Node{
Entries: []*Entry{tree.Root.Entries[middle]},
Children: []*Node{left, right},
}
left.Parent = newRoot
right.Parent = newRoot
tree.Root = newRoot
}
func setParent(nodes []*Node, parent *Node) {
for _, node := range nodes {
node.Parent = parent
}
}
func (tree *Tree) left(node *Node) *Node {
if tree.Empty() {
return nil
}
current := node
for {
if tree.isLeaf(current) {
return current
}
current = current.Children[0]
}
}
func (tree *Tree) right(node *Node) *Node {
if tree.Empty() {
return nil
}
current := node
for {
if tree.isLeaf(current) {
return current
}
current = current.Children[len(current.Children)-1]
}
}
// leftSibling returns the node's left sibling and child index (in parent) if it exists, otherwise (nil,-1)
// key is any of keys in node (could even be deleted).
func (tree *Tree) leftSibling(node *Node, key interface{}) (*Node, int) {
if node.Parent != nil {
index, _ := tree.search(node.Parent, key)
index--
if index >= 0 && index < len(node.Parent.Children) {
return node.Parent.Children[index], index
}
}
return nil, -1
}
// rightSibling returns the node's right sibling and child index (in parent) if it exists, otherwise (nil,-1)
// key is any of keys in node (could even be deleted).
func (tree *Tree) rightSibling(node *Node, key interface{}) (*Node, int) {
if node.Parent != nil {
index, _ := tree.search(node.Parent, key)
index++
if index < len(node.Parent.Children) {
return node.Parent.Children[index], index
}
}
return nil, -1
}
// delete deletes an entry in node at entries' index
// ref.: https://en.wikipedia.org/wiki/B-tree#Deletion
func (tree *Tree) delete(node *Node, index int) {
// deleting from a leaf node
if tree.isLeaf(node) {
deletedKey := node.Entries[index].Key
tree.deleteEntry(node, index)
tree.rebalance(node, deletedKey)
if len(tree.Root.Entries) == 0 {
tree.Root = nil
}
return
}
// deleting from an internal node
leftLargestNode := tree.right(node.Children[index]) // largest node in the left sub-tree (assumed to exist)
leftLargestEntryIndex := len(leftLargestNode.Entries) - 1
node.Entries[index] = leftLargestNode.Entries[leftLargestEntryIndex]
deletedKey := leftLargestNode.Entries[leftLargestEntryIndex].Key
tree.deleteEntry(leftLargestNode, leftLargestEntryIndex)
tree.rebalance(leftLargestNode, deletedKey)
}
// rebalance rebalances the tree after deletion if necessary and returns true, otherwise false.
// Note that we first delete the entry and then call rebalance, thus the passed deleted key as reference.
func (tree *Tree) rebalance(node *Node, deletedKey interface{}) {
// check if rebalancing is needed
if node == nil || len(node.Entries) >= tree.minEntries() {
return
}
// try to borrow from left sibling
leftSibling, leftSiblingIndex := tree.leftSibling(node, deletedKey)
if leftSibling != nil && len(leftSibling.Entries) > tree.minEntries() {
// rotate right
node.Entries = append([]*Entry{node.Parent.Entries[leftSiblingIndex]}, node.Entries...) // prepend parent's separator entry to node's entries
node.Parent.Entries[leftSiblingIndex] = leftSibling.Entries[len(leftSibling.Entries)-1]
tree.deleteEntry(leftSibling, len(leftSibling.Entries)-1)
if !tree.isLeaf(leftSibling) {
leftSiblingRightMostChild := leftSibling.Children[len(leftSibling.Children)-1]
leftSiblingRightMostChild.Parent = node
node.Children = append([]*Node{leftSiblingRightMostChild}, node.Children...)
tree.deleteChild(leftSibling, len(leftSibling.Children)-1)
}
return
}
// try to borrow from right sibling
rightSibling, rightSiblingIndex := tree.rightSibling(node, deletedKey)
if rightSibling != nil && len(rightSibling.Entries) > tree.minEntries() {
// rotate left
node.Entries = append(node.Entries, node.Parent.Entries[rightSiblingIndex-1]) // append parent's separator entry to node's entries
node.Parent.Entries[rightSiblingIndex-1] = rightSibling.Entries[0]
tree.deleteEntry(rightSibling, 0)
if !tree.isLeaf(rightSibling) {
rightSiblingLeftMostChild := rightSibling.Children[0]
rightSiblingLeftMostChild.Parent = node
node.Children = append(node.Children, rightSiblingLeftMostChild)
tree.deleteChild(rightSibling, 0)
}
return
}
// merge with siblings
if rightSibling != nil {
// merge with right sibling
node.Entries = append(node.Entries, node.Parent.Entries[rightSiblingIndex-1])
node.Entries = append(node.Entries, rightSibling.Entries...)
deletedKey = node.Parent.Entries[rightSiblingIndex-1].Key
tree.deleteEntry(node.Parent, rightSiblingIndex-1)
tree.appendChildren(node.Parent.Children[rightSiblingIndex], node)
tree.deleteChild(node.Parent, rightSiblingIndex)
} else if leftSibling != nil {
// merge with left sibling
entries := append([]*Entry(nil), leftSibling.Entries...)
entries = append(entries, node.Parent.Entries[leftSiblingIndex])
node.Entries = append(entries, node.Entries...)
deletedKey = node.Parent.Entries[leftSiblingIndex].Key
tree.deleteEntry(node.Parent, leftSiblingIndex)
tree.prependChildren(node.Parent.Children[leftSiblingIndex], node)
tree.deleteChild(node.Parent, leftSiblingIndex)
}
// make the merged node the root if its parent was the root and the root is empty
if node.Parent == tree.Root && len(tree.Root.Entries) == 0 {
tree.Root = node
node.Parent = nil
return
}
// parent might underflow, so try to rebalance if necessary
tree.rebalance(node.Parent, deletedKey)
}
func (tree *Tree) prependChildren(fromNode *Node, toNode *Node) {
children := append([]*Node(nil), fromNode.Children...)
toNode.Children = append(children, toNode.Children...)
setParent(fromNode.Children, toNode)
}
func (tree *Tree) appendChildren(fromNode *Node, toNode *Node) {
toNode.Children = append(toNode.Children, fromNode.Children...)
setParent(fromNode.Children, toNode)
}
func (tree *Tree) deleteEntry(node *Node, index int) {
copy(node.Entries[index:], node.Entries[index+1:])
node.Entries[len(node.Entries)-1] = nil
node.Entries = node.Entries[:len(node.Entries)-1]
}
func (tree *Tree) deleteChild(node *Node, index int) {
if index >= len(node.Children) {
return
}
copy(node.Children[index:], node.Children[index+1:])
node.Children[len(node.Children)-1] = nil
node.Children = node.Children[:len(node.Children)-1]
}