[![Build Status](https://travis-ci.org/emirpasic/gods.svg)](https://travis-ci.org/emirpasic/gods) [![GoDoc](https://godoc.org/github.com/emirpasic/gods?status.svg)](https://godoc.org/github.com/emirpasic/gods) # GoDS (Go Data Structures) Implementation of various data structures in Go. ## Data Structures - [Containers](#containers) - [Sets](#sets) - [HashSet](#hashset) - [TreeSet](#treeset) - [Lists](#lists) - [ArrayList](#arraylist) - [SinglyLinkedList](#singlylinkedlist) - [DoublyLinkedList](#doublylinkedlist) - [Stacks](#stacks) - [LinkedListStack](#linkedliststack) - [ArrayStack](#arraystack) - [Maps](#maps) - [HashMap](#hashmap) - [TreeMap](#treemap) - [Trees](#trees) - [RedBlackTree](#redblacktree) - [BinaryHeap](#binaryheap) - [Functions](#functions) - [Comparator](#comparator) - [Sort](#sort) ###Containers All data structures implement the container interface with the following methods: ```go type Interface interface { Empty() bool Size() int Clear() Values() []interface{} } ``` Container specific operations: ```go // Returns sorted container's elements with respect to the passed comparator. // Does not effect the ordering of elements within the container. // Uses timsort. func GetSortedValues(container Interface, comparator utils.Comparator) []interface{} { ``` ####Sets A set is a data structure that can store elements and no repeated values. It is a computer implementation of the mathematical concept of a finite set. Unlike most other collection types, rather than retrieving a specific element from a set, one typically tests an element for membership in a set. This structed is often used to ensure that no duplicates are present in a collection. All sets implement the set interface with the following methods: ```go type Interface interface { Add(elements ...interface{}) Remove(elements ...interface{}) Contains(elements ...interface{}) bool containers.Interface // Empty() bool // Size() int // Clear() // Values() []interface{} } ``` #####HashSet This structure implements the Set interface and is backed by a hash table (actually a Go's map). It makes no guarantees as to the iteration order of the set, since Go randomizes this iteration order on maps. This structure offers constant time performance for the basic operations (add, remove, contains and size). ```go package main import "github.com/emirpasic/gods/sets/hashset" func main() { set := hashset.New() // empty set.Add(1) // 1 set.Add(2, 2, 3, 4, 5) // 3, 1, 2, 4, 5 (random order, duplicates ignored) set.Remove(4) // 5, 3, 2, 1 (random order) set.Remove(2, 3) // 1, 5 (random order) set.Contains(1) // true set.Contains(1, 5) // true set.Contains(1, 6) // false _ = set.Values() // []int{5,1} (random order) set.Clear() // empty set.Empty() // true set.Size() // 0 } ``` #####TreeSet This structure implements the Set interface and is backed by a red-black tree to keep the elements sorted with respect to the comparator. This implementation provides guaranteed log(n) time cost for the basic operations (add, remove and contains). ```go package main import "github.com/emirpasic/gods/sets/treeset" func main() { set := treeset.NewWithIntComparator() // empty (keys are of type int) set.Add(1) // 1 set.Add(2, 2, 3, 4, 5) // 1, 2, 3, 4, 5 (in order, duplicates ignored) set.Remove(4) // 1, 2, 3, 5 (in order) set.Remove(2, 3) // 1, 5 (in order) set.Contains(1) // true set.Contains(1, 5) // true set.Contains(1, 6) // false _ = set.Values() // []int{1,5} (in order) set.Clear() // empty set.Empty() // true set.Size() // 0 } ``` ####Lists A list is a data structure that can store values and may have repeated values. There is no ordering in a list. The user can access and remove a value by the index position. All lists implement the list interface with the following methods: ```go type Interface interface { Get(index int) (interface{}, bool) Remove(index int) Add(values ...interface{}) Contains(values ...interface{}) bool Sort(comparator utils.Comparator) Swap(index1, index2 int) Insert(index int, values ...interface{}) containers.Interface // Empty() bool // Size() int // Clear() // Values() []interface{} } ``` #####ArrayList This structure implements the List interface and is backed by a dynamic array that grows and shrinks implicitly (by 100% when capacity is reached). Direct access method _Get(index)_ is guaranteed a constant time performance. Remove is of linear time performance. Checking with _Contains()_ is of quadratic complexity. ```go package main import ( "github.com/emirpasic/gods/lists/arraylist" "github.com/emirpasic/gods/utils" ) func main() { list := arraylist.New() list.Add("a") // ["a"] list.Add("c", "b") // ["a","c","b"] list.Sort(utils.StringComparator) // ["a","b","c"] _, _ = list.Get(0) // "a",true _, _ = list.Get(100) // nil,false _ = list.Contains("a", "b", "c") // true _ = list.Contains("a", "b", "c", "d") // false list.Swap(0, 1) // ["b","a",c"] list.Remove(2) // ["b","a"] list.Remove(1) // ["b"] list.Remove(0) // [] list.Remove(0) // [] (ignored) _ = list.Empty() // true _ = list.Size() // 0 list.Add("a") // ["a"] list.Clear() // [] list.Insert(0, "b") // ["b"] list.Insert(0, "a") // ["a","b"] } ``` #####SinglyLinkedList This structure implements the _List_ interface and is a linked data structure where each value points to the next in the list. Direct access method _Get(index)_ and _Remove()_ are of linear performance. _Append_ and _Prepend_ are of constant time performance. Checking with _Contains()_ is of quadratic complexity. ```go package main import ( sll "github.com/emirpasic/gods/lists/singlylinkedlist" "github.com/emirpasic/gods/utils" ) func main() { list := sll.New() list.Add("a") // ["a"] list.Add("c", "b") // ["a","c","b"] list.Sort(utils.StringComparator) // ["a","b","c"] _, _ = list.Get(0) // "a",true _, _ = list.Get(100) // nil,false _ = list.Contains("a", "b", "c") // true _ = list.Contains("a", "b", "c", "d") // false list.Swap(0, 1) // ["b","a",c"] list.Remove(2) // ["b","a"] list.Remove(1) // ["b"] list.Remove(0) // [] list.Remove(0) // [] (ignored) _ = list.Empty() // true _ = list.Size() // 0 list.Add("a") // ["a"] list.Clear() // [] list.Insert(0, "b") // ["b"] list.Insert(0, "a") // ["a","b"] } ``` #####DoublyLinkedList This structure implements the _List_ interface and is a linked data structure where each value points to the next and previous element in the list. Direct access method _Get(index)_ and _Remove()_ are of linear performance. _Append_ and _Prepend_ are of constant time performance. Checking with _Contains()_ is of quadratic complexity. ```go package main import ( dll "github.com/emirpasic/gods/lists/doublylinkedlist" "github.com/emirpasic/gods/utils" ) func main() { list := dll.New() list.Add("a") // ["a"] list.Add("c", "b") // ["a","c","b"] list.Sort(utils.StringComparator) // ["a","b","c"] _, _ = list.Get(0) // "a",true _, _ = list.Get(100) // nil,false _ = list.Contains("a", "b", "c") // true _ = list.Contains("a", "b", "c", "d") // false list.Swap(0, 1) // ["b","a",c"] list.Remove(2) // ["b","a"] list.Remove(1) // ["b"] list.Remove(0) // [] list.Remove(0) // [] (ignored) _ = list.Empty() // true _ = list.Size() // 0 list.Add("a") // ["a"] list.Clear() // [] list.Insert(0, "b") // ["b"] list.Insert(0, "a") // ["a","b"] } ``` ####Stacks The stack interface represents a last-in-first-out (LIFO) collection of objects. The usual push and pop operations are provided, as well as a method to peek at the top item on the stack, a method to check whether the stack is empty and the size (number of elements). All stacks implement the stack interface with the following methods: ```go type Interface interface { Push(value interface{}) Pop() (value interface{}, ok bool) Peek() (value interface{}, ok bool) containers.Interface // Empty() bool // Size() int // Clear() // Values() []interface{} } ``` #####LinkedListStack This stack structure is based on a linked list, i.e. each previous element has a point to the next. All operations are guaranteed constant time performance, except _Values()_, which is as always of linear time performance. ```go package main import lls "github.com/emirpasic/gods/stacks/linkedliststack" func main() { stack := lls.New() // empty stack.Push(1) // 1 stack.Push(2) // 1, 2 stack.Values() // 2, 1 (LIFO order) _, _ = stack.Peek() // 2,true _, _ = stack.Pop() // 2, true _, _ = stack.Pop() // 1, true _, _ = stack.Pop() // nil, false (nothing to pop) stack.Push(1) // 1 stack.Clear() // empty stack.Empty() // true stack.Size() // 0 } ``` #####ArrayStack This stack structure is back by ArrayList. All operations are guaranted constant time performance. ```go package main import "github.com/emirpasic/gods/stacks/arraystack" func main() { stack := arraystack.New() // empty stack.Push(1) // 1 stack.Push(2) // 1, 2 stack.Values() // 2, 1 (LIFO order) _, _ = stack.Peek() // 2,true _, _ = stack.Pop() // 2, true _, _ = stack.Pop() // 1, true _, _ = stack.Pop() // nil, false (nothing to pop) stack.Push(1) // 1 stack.Clear() // empty stack.Empty() // true stack.Size() // 0 } ``` ####Maps Structure that maps keys to values. A map cannot contain duplicate keys and each key can map to at most one value. All maps implement the map interface with the following methods: ```go type Interface interface { Put(key interface{}, value interface{}) Get(key interface{}) (value interface{}, found bool) Remove(key interface{}) Keys() []interface{} containers.Interface // Empty() bool // Size() int // Clear() // Values() []interface{} } ``` #####HashMap Map structure based on hash tables, more exactly, Go's map. Keys are unordered. All operations are guaranted constant time performance, except _Key()_ and _Values()_ retrieval that of linear time performance. ```go package main import "github.com/emirpasic/gods/maps/hashmap" func main() { m := hashmap.New() // empty m.Put(1, "x") // 1->x m.Put(2, "b") // 2->b, 1->x (random order) m.Put(1, "a") // 2->b, 1->a (random order) _, _ = m.Get(2) // b, true _, _ = m.Get(3) // nil, false _ = m.Values() // []interface {}{"b", "a"} (random order) _ = m.Keys() // []interface {}{1, 2} (random order) m.Remove(1) // 2->b m.Clear() // empty m.Empty() // true m.Size() // 0 } ``` #####TreeMap Map structure based on our red-black tree implementation. Keys are ordered with respect to the passed comparator. _Put()_, _Get()_ and _Remove()_ are guaranteed log(n) time performance. _Key()_ and _Values()_ methods return keys and values respectively in order of the keys. These meethods are quaranteed linear time performance. ```go package main import "github.com/emirpasic/gods/maps/treemap" func main() { m := treemap.NewWithIntComparator() // empty (keys are of type int) m.Put(1, "x") // 1->x m.Put(2, "b") // 1->x, 2->b (in order) m.Put(1, "a") // 1->a, 2->b (in order) _, _ = m.Get(2) // b, true _, _ = m.Get(3) // nil, false _ = m.Values() // []interface {}{"a", "b"} (in order) _ = m.Keys() // []interface {}{1, 2} (in order) m.Remove(1) // 2->b m.Clear() // empty m.Empty() // true m.Size() // 0 // Other: m.Min() // Returns the minimum key and its value from map. m.Max() // Returns the maximum key and its value from map. } ``` ####Trees A tree is a widely used data data structure that simulates a hierarchical tree structure, with a root value and subtrees of children, represented as a set of linked nodes; thus no cyclic links. All trees implement the tree interface with the following methods: ```go type Interface interface { containers.Interface // Empty() bool // Size() int // Clear() // Values() []interface{} } ``` #####RedBlackTree A red–black tree is a binary search tree with an extra bit of data per node, its color, which can be either red or black. The extra bit of storage ensures an approximately balanced tree by constraining how nodes are colored from any path from the root to the leaf. Thus, it is a data structure which is a type of self-balancing binary search tree. The balancing of the tree is not perfect but it is good enough to allow it to guarantee searching in O(log n) time, where n is the total number of elements in the tree. The insertion and deletion operations, along with the tree rearrangement and recoloring, are also performed in O(log n) time.[Wikipedia](http://en.wikipedia.org/wiki/Red%E2%80%93black_tree)