mirror of
https://github.com/emirpasic/gods
synced 2024-11-06 15:20:25 +00:00
1149 lines
30 KiB
Go
1149 lines
30 KiB
Go
|
// Obtained from: https://github.com/psilva261/timsort
|
||
|
|
||
|
/*
|
||
|
Copyright (c) 2010-2011 Mike Kroutikov
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files (the "Software"), to deal
|
||
|
in the Software without restriction, including without limitation the rights
|
||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions:
|
||
|
|
||
|
The above copyright notice and this permission notice shall be included in
|
||
|
all copies or substantial portions of the Software.
|
||
|
|
||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
THE SOFTWARE
|
||
|
*/
|
||
|
|
||
|
// Fast stable sort, uses external comparator.
|
||
|
//
|
||
|
// A stable, adaptive, iterative mergesort that requires far fewer than
|
||
|
// n lg(n) comparisons when running on partially sorted arrays, while
|
||
|
// offering performance comparable to a traditional mergesort when run
|
||
|
// on random arrays. Like all proper mergesorts, this sort is stable and
|
||
|
// runs O(n log n) time (worst case). In the worst case, this sort requires
|
||
|
// temporary storage space for n/2 object references; in the best case,
|
||
|
// it requires only a small constant amount of space.
|
||
|
//
|
||
|
// This implementation was derived from Java's TimSort object by Josh Bloch,
|
||
|
// which, in turn, was based on the original code by Tim Peters:
|
||
|
//
|
||
|
// http://svn.python.org/projects/python/trunk/Objects/listsort.txt
|
||
|
//
|
||
|
// Mike K.
|
||
|
|
||
|
package timsort
|
||
|
|
||
|
import (
|
||
|
"errors"
|
||
|
"fmt"
|
||
|
)
|
||
|
|
||
|
const (
|
||
|
/**
|
||
|
* This is the minimum sized sequence that will be merged. Shorter
|
||
|
* sequences will be lengthened by calling binarySort. If the entire
|
||
|
* array is less than this length, no merges will be performed.
|
||
|
*
|
||
|
* This constant should be a power of two. It was 64 in Tim Peter's C
|
||
|
* implementation, but 32 was empirically determined to work better in
|
||
|
* this implementation. In the unlikely event that you set this constant
|
||
|
* to be a number that's not a power of two, you'll need to change the
|
||
|
* {@link #minRunLength} computation.
|
||
|
*
|
||
|
* If you decrease this constant, you must change the stackLen
|
||
|
* computation in the TimSort constructor, or you risk an
|
||
|
* ArrayOutOfBounds exception. See listsort.txt for a discussion
|
||
|
* of the minimum stack length required as a function of the length
|
||
|
* of the array being sorted and the minimum merge sequence length.
|
||
|
*/
|
||
|
_MIN_MERGE = 32
|
||
|
// mk: tried higher MIN_MERGE and got slower sorting (348->375)
|
||
|
// c_MIN_MERGE = 64
|
||
|
|
||
|
/**
|
||
|
* When we get into galloping mode, we stay there until both runs win less
|
||
|
* often than c_MIN_GALLOP consecutive times.
|
||
|
*/
|
||
|
_MIN_GALLOP = 7
|
||
|
|
||
|
/**
|
||
|
* Maximum initial size of tmp array, which is used for merging. The array
|
||
|
* can grow to accommodate demand.
|
||
|
*
|
||
|
* Unlike Tim's original C version, we do not allocate this much storage
|
||
|
* when sorting smaller arrays. This change was required for performance.
|
||
|
*/
|
||
|
_INITIAL_TMP_STORAGE_LENGTH = 256
|
||
|
)
|
||
|
|
||
|
// Delegate type that sorting uses as a comparator
|
||
|
type LessThan func(a, b interface{}) bool
|
||
|
|
||
|
type timSortHandler struct {
|
||
|
|
||
|
/**
|
||
|
* The array being sorted.
|
||
|
*/
|
||
|
a []interface{}
|
||
|
|
||
|
/**
|
||
|
* The comparator for this sort.
|
||
|
*/
|
||
|
lt LessThan
|
||
|
|
||
|
/**
|
||
|
* This controls when we get *into* galloping mode. It is initialized
|
||
|
* to c_MIN_GALLOP. The mergeLo and mergeHi methods nudge it higher for
|
||
|
* random data, and lower for highly structured data.
|
||
|
*/
|
||
|
minGallop int
|
||
|
|
||
|
/**
|
||
|
* Temp storage for merges.
|
||
|
*/
|
||
|
tmp []interface{} // Actual runtime type will be Object[], regardless of T
|
||
|
|
||
|
/**
|
||
|
* A stack of pending runs yet to be merged. Run i starts at
|
||
|
* address base[i] and extends for len[i] elements. It's always
|
||
|
* true (so long as the indices are in bounds) that:
|
||
|
*
|
||
|
* runBase[i] + runLen[i] == runBase[i + 1]
|
||
|
*
|
||
|
* so we could cut the storage for this, but it's a minor amount,
|
||
|
* and keeping all the info explicit simplifies the code.
|
||
|
*/
|
||
|
stackSize int // Number of pending runs on stack
|
||
|
runBase []int
|
||
|
runLen []int
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates a TimSort instance to maintain the state of an ongoing sort.
|
||
|
*
|
||
|
* @param a the array to be sorted
|
||
|
* @param c the comparator to determine the order of the sort
|
||
|
*/
|
||
|
func newTimSort(a []interface{}, lt LessThan) (self *timSortHandler) {
|
||
|
self = new(timSortHandler)
|
||
|
|
||
|
self.a = a
|
||
|
self.lt = lt
|
||
|
self.minGallop = _MIN_GALLOP
|
||
|
self.stackSize = 0
|
||
|
|
||
|
// Allocate temp storage (which may be increased later if necessary)
|
||
|
len := len(a)
|
||
|
|
||
|
tmpSize := _INITIAL_TMP_STORAGE_LENGTH
|
||
|
if len < 2*tmpSize {
|
||
|
tmpSize = len / 2
|
||
|
}
|
||
|
|
||
|
self.tmp = make([]interface{}, tmpSize)
|
||
|
|
||
|
/*
|
||
|
* Allocate runs-to-be-merged stack (which cannot be expanded). The
|
||
|
* stack length requirements are described in listsort.txt. The C
|
||
|
* version always uses the same stack length (85), but this was
|
||
|
* measured to be too expensive when sorting "mid-sized" arrays (e.g.,
|
||
|
* 100 elements) in Java. Therefore, we use smaller (but sufficiently
|
||
|
* large) stack lengths for smaller arrays. The "magic numbers" in the
|
||
|
* computation below must be changed if c_MIN_MERGE is decreased. See
|
||
|
* the c_MIN_MERGE declaration above for more information.
|
||
|
*/
|
||
|
// mk: confirmed that for small sorts this optimization gives measurable (albeit small)
|
||
|
// performance enhancement
|
||
|
stackLen := 40
|
||
|
if len < 120 {
|
||
|
stackLen = 5
|
||
|
} else if len < 1542 {
|
||
|
stackLen = 10
|
||
|
} else if len < 119151 {
|
||
|
stackLen = 19
|
||
|
}
|
||
|
|
||
|
self.runBase = make([]int, stackLen)
|
||
|
self.runLen = make([]int, stackLen)
|
||
|
|
||
|
return self
|
||
|
}
|
||
|
|
||
|
// Sorts an array using the provided comparator
|
||
|
func Sort(a []interface{}, lt LessThan) (err error) {
|
||
|
lo := 0
|
||
|
hi := len(a)
|
||
|
nRemaining := hi
|
||
|
|
||
|
if nRemaining < 2 {
|
||
|
return // Arrays of size 0 and 1 are always sorted
|
||
|
}
|
||
|
|
||
|
// If array is small, do a "mini-TimSort" with no merges
|
||
|
if nRemaining < _MIN_MERGE {
|
||
|
initRunLen, err := countRunAndMakeAscending(a, lo, hi, lt)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
return binarySort(a, lo, hi, lo+initRunLen, lt)
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* March over the array once, left to right, finding natural runs,
|
||
|
* extending short natural runs to minRun elements, and merging runs
|
||
|
* to maintain stack invariant.
|
||
|
*/
|
||
|
|
||
|
ts := newTimSort(a, lt)
|
||
|
minRun, err := minRunLength(nRemaining)
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
for {
|
||
|
// Identify next run
|
||
|
runLen, err := countRunAndMakeAscending(a, lo, hi, lt)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// If run is short, extend to min(minRun, nRemaining)
|
||
|
if runLen < minRun {
|
||
|
force := minRun
|
||
|
if nRemaining <= minRun {
|
||
|
force = nRemaining
|
||
|
}
|
||
|
if err = binarySort(a, lo, lo+force, lo+runLen, lt); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
runLen = force
|
||
|
}
|
||
|
|
||
|
// Push run onto pending-run stack, and maybe merge
|
||
|
ts.pushRun(lo, runLen)
|
||
|
if err = ts.mergeCollapse(); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
|
||
|
// Advance to find next run
|
||
|
lo += runLen
|
||
|
nRemaining -= runLen
|
||
|
if nRemaining == 0 {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Merge all remaining runs to complete sort
|
||
|
if lo != hi {
|
||
|
return errors.New("lo==hi!")
|
||
|
}
|
||
|
|
||
|
if err = ts.mergeForceCollapse(); err != nil {
|
||
|
return
|
||
|
}
|
||
|
if ts.stackSize != 1 {
|
||
|
return errors.New("ts.stackSize != 1")
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sorts the specified portion of the specified array using a binary
|
||
|
* insertion sort. This is the best method for sorting small numbers
|
||
|
* of elements. It requires O(n log n) compares, but O(n^2) data
|
||
|
* movement (worst case).
|
||
|
*
|
||
|
* If the initial part of the specified range is already sorted,
|
||
|
* this method can take advantage of it: the method assumes that the
|
||
|
* elements from index {@code lo}, inclusive, to {@code start},
|
||
|
* exclusive are already sorted.
|
||
|
*
|
||
|
* @param a the array in which a range is to be sorted
|
||
|
* @param lo the index of the first element in the range to be sorted
|
||
|
* @param hi the index after the last element in the range to be sorted
|
||
|
* @param start the index of the first element in the range that is
|
||
|
* not already known to be sorted (@code lo <= start <= hi}
|
||
|
* @param c comparator to used for the sort
|
||
|
*/
|
||
|
func binarySort(a []interface{}, lo, hi, start int, lt LessThan) (err error) {
|
||
|
if lo > start || start > hi {
|
||
|
return errors.New("lo <= start && start <= hi")
|
||
|
}
|
||
|
|
||
|
if start == lo {
|
||
|
start++
|
||
|
}
|
||
|
|
||
|
for ; start < hi; start++ {
|
||
|
pivot := a[start]
|
||
|
|
||
|
// Set left (and right) to the index where a[start] (pivot) belongs
|
||
|
left := lo
|
||
|
right := start
|
||
|
|
||
|
if left > right {
|
||
|
return errors.New("left <= right")
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Invariants:
|
||
|
* pivot >= all in [lo, left).
|
||
|
* pivot < all in [right, start).
|
||
|
*/
|
||
|
for left < right {
|
||
|
mid := (left + right) / 2
|
||
|
if lt(pivot, a[mid]) {
|
||
|
right = mid
|
||
|
} else {
|
||
|
left = mid + 1
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if left != right {
|
||
|
return errors.New("left == right")
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The invariants still hold: pivot >= all in [lo, left) and
|
||
|
* pivot < all in [left, start), so pivot belongs at left. Note
|
||
|
* that if there are elements equal to pivot, left points to the
|
||
|
* first slot after them -- that's why this sort is stable.
|
||
|
* Slide elements over to make room to make room for pivot.
|
||
|
*/
|
||
|
n := start - left // The number of elements to move
|
||
|
// just an optimization for copy in default case
|
||
|
if n <= 2 {
|
||
|
if n == 2 {
|
||
|
a[left+2] = a[left+1]
|
||
|
}
|
||
|
if n > 0 {
|
||
|
a[left+1] = a[left]
|
||
|
}
|
||
|
} else {
|
||
|
copy(a[left+1:], a[left:left+n])
|
||
|
}
|
||
|
a[left] = pivot
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the length of the run beginning at the specified position in
|
||
|
* the specified array and reverses the run if it is descending (ensuring
|
||
|
* that the run will always be ascending when the method returns).
|
||
|
*
|
||
|
* A run is the longest ascending sequence with:
|
||
|
*
|
||
|
* a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
|
||
|
*
|
||
|
* or the longest descending sequence with:
|
||
|
*
|
||
|
* a[lo] > a[lo + 1] > a[lo + 2] > ...
|
||
|
*
|
||
|
* For its intended use in a stable mergesort, the strictness of the
|
||
|
* definition of "descending" is needed so that the call can safely
|
||
|
* reverse a descending sequence without violating stability.
|
||
|
*
|
||
|
* @param a the array in which a run is to be counted and possibly reversed
|
||
|
* @param lo index of the first element in the run
|
||
|
* @param hi index after the last element that may be contained in the run.
|
||
|
It is required that @code{lo < hi}.
|
||
|
* @param c the comparator to used for the sort
|
||
|
* @return the length of the run beginning at the specified position in
|
||
|
* the specified array
|
||
|
*/
|
||
|
func countRunAndMakeAscending(a []interface{}, lo, hi int, lt LessThan) (int, error) {
|
||
|
|
||
|
if lo >= hi {
|
||
|
return 0, errors.New("lo < hi")
|
||
|
}
|
||
|
|
||
|
runHi := lo + 1
|
||
|
if runHi == hi {
|
||
|
return 1, nil
|
||
|
}
|
||
|
|
||
|
// Find end of run, and reverse range if descending
|
||
|
if lt(a[runHi], a[lo]) { // Descending
|
||
|
runHi++
|
||
|
|
||
|
for runHi < hi && lt(a[runHi], a[runHi-1]) {
|
||
|
runHi++
|
||
|
}
|
||
|
reverseRange(a, lo, runHi)
|
||
|
} else { // Ascending
|
||
|
for runHi < hi && !lt(a[runHi], a[runHi-1]) {
|
||
|
runHi++
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return runHi - lo, nil
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Reverse the specified range of the specified array.
|
||
|
*
|
||
|
* @param a the array in which a range is to be reversed
|
||
|
* @param lo the index of the first element in the range to be reversed
|
||
|
* @param hi the index after the last element in the range to be reversed
|
||
|
*/
|
||
|
func reverseRange(a []interface{}, lo, hi int) {
|
||
|
hi--
|
||
|
for lo < hi {
|
||
|
a[lo], a[hi] = a[hi], a[lo]
|
||
|
lo++
|
||
|
hi--
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the minimum acceptable run length for an array of the specified
|
||
|
* length. Natural runs shorter than this will be extended with
|
||
|
* {@link #binarySort}.
|
||
|
*
|
||
|
* Roughly speaking, the computation is:
|
||
|
*
|
||
|
* If n < c_MIN_MERGE, return n (it's too small to bother with fancy stuff).
|
||
|
* Else if n is an exact power of 2, return c_MIN_MERGE/2.
|
||
|
* Else return an int k, c_MIN_MERGE/2 <= k <= c_MIN_MERGE, such that n/k
|
||
|
* is close to, but strictly less than, an exact power of 2.
|
||
|
*
|
||
|
* For the rationale, see listsort.txt.
|
||
|
*
|
||
|
* @param n the length of the array to be sorted
|
||
|
* @return the length of the minimum run to be merged
|
||
|
*/
|
||
|
func minRunLength(n int) (int, error) {
|
||
|
if n < 0 {
|
||
|
return 0, errors.New("n >= 0")
|
||
|
}
|
||
|
r := 0 // Becomes 1 if any 1 bits are shifted off
|
||
|
for n >= _MIN_MERGE {
|
||
|
r |= (n & 1)
|
||
|
n >>= 1
|
||
|
}
|
||
|
return n + r, nil
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Pushes the specified run onto the pending-run stack.
|
||
|
*
|
||
|
* @param runBase index of the first element in the run
|
||
|
* @param runLen the number of elements in the run
|
||
|
*/
|
||
|
func (self *timSortHandler) pushRun(runBase, runLen int) {
|
||
|
self.runBase[self.stackSize] = runBase
|
||
|
self.runLen[self.stackSize] = runLen
|
||
|
self.stackSize++
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Examines the stack of runs waiting to be merged and merges adjacent runs
|
||
|
* until the stack invariants are reestablished:
|
||
|
*
|
||
|
* 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
|
||
|
* 2. runLen[i - 2] > runLen[i - 1]
|
||
|
*
|
||
|
* This method is called each time a new run is pushed onto the stack,
|
||
|
* so the invariants are guaranteed to hold for i < stackSize upon
|
||
|
* entry to the method.
|
||
|
*/
|
||
|
func (self *timSortHandler) mergeCollapse() (err error) {
|
||
|
for self.stackSize > 1 {
|
||
|
n := self.stackSize - 2
|
||
|
if n > 0 && self.runLen[n-1] <= self.runLen[n]+self.runLen[n+1] {
|
||
|
if self.runLen[n-1] < self.runLen[n+1] {
|
||
|
n--
|
||
|
}
|
||
|
if err = self.mergeAt(n); err != nil {
|
||
|
return
|
||
|
}
|
||
|
} else if self.runLen[n] <= self.runLen[n+1] {
|
||
|
if err = self.mergeAt(n); err != nil {
|
||
|
return
|
||
|
}
|
||
|
} else {
|
||
|
break // Invariant is established
|
||
|
}
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Merges all runs on the stack until only one remains. This method is
|
||
|
* called once, to complete the sort.
|
||
|
*/
|
||
|
func (self *timSortHandler) mergeForceCollapse() (err error) {
|
||
|
for self.stackSize > 1 {
|
||
|
n := self.stackSize - 2
|
||
|
if n > 0 && self.runLen[n-1] < self.runLen[n+1] {
|
||
|
n--
|
||
|
}
|
||
|
if err = self.mergeAt(n); err != nil {
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Merges the two runs at stack indices i and i+1. Run i must be
|
||
|
* the penultimate or antepenultimate run on the stack. In other words,
|
||
|
* i must be equal to stackSize-2 or stackSize-3.
|
||
|
*
|
||
|
* @param i stack index of the first of the two runs to merge
|
||
|
*/
|
||
|
func (self *timSortHandler) mergeAt(i int) (err error) {
|
||
|
if self.stackSize < 2 {
|
||
|
return errors.New("stackSize >= 2")
|
||
|
}
|
||
|
|
||
|
if i < 0 {
|
||
|
return errors.New(" i >= 0")
|
||
|
}
|
||
|
|
||
|
if i != self.stackSize-2 && i != self.stackSize-3 {
|
||
|
return errors.New("if i == stackSize - 2 || i == stackSize - 3")
|
||
|
}
|
||
|
|
||
|
base1 := self.runBase[i]
|
||
|
len1 := self.runLen[i]
|
||
|
base2 := self.runBase[i+1]
|
||
|
len2 := self.runLen[i+1]
|
||
|
|
||
|
if len1 <= 0 || len2 <= 0 {
|
||
|
return errors.New("len1 > 0 && len2 > 0")
|
||
|
}
|
||
|
|
||
|
if base1+len1 != base2 {
|
||
|
return errors.New("base1 + len1 == base2")
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Record the length of the combined runs; if i is the 3rd-last
|
||
|
* run now, also slide over the last run (which isn't involved
|
||
|
* in this merge). The current run (i+1) goes away in any case.
|
||
|
*/
|
||
|
self.runLen[i] = len1 + len2
|
||
|
if i == self.stackSize-3 {
|
||
|
self.runBase[i+1] = self.runBase[i+2]
|
||
|
self.runLen[i+1] = self.runLen[i+2]
|
||
|
}
|
||
|
self.stackSize--
|
||
|
|
||
|
/*
|
||
|
* Find where the first element of run2 goes in run1. Prior elements
|
||
|
* in run1 can be ignored (because they're already in place).
|
||
|
*/
|
||
|
k, err := gallopRight(self.a[base2], self.a, base1, len1, 0, self.lt)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
if k < 0 {
|
||
|
return errors.New(" k >= 0;")
|
||
|
}
|
||
|
base1 += k
|
||
|
len1 -= k
|
||
|
if len1 == 0 {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Find where the last element of run1 goes in run2. Subsequent elements
|
||
|
* in run2 can be ignored (because they're already in place).
|
||
|
*/
|
||
|
len2, err = gallopLeft(self.a[base1+len1-1], self.a, base2, len2, len2-1, self.lt)
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
if len2 < 0 {
|
||
|
return errors.New(" len2 >= 0;")
|
||
|
}
|
||
|
if len2 == 0 {
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Merge remaining runs, using tmp array with min(len1, len2) elements
|
||
|
if len1 <= len2 {
|
||
|
err = self.mergeLo(base1, len1, base2, len2)
|
||
|
if err != nil {
|
||
|
return errors.New(fmt.Sprintf("mergeLo: %v", err))
|
||
|
}
|
||
|
} else {
|
||
|
err = self.mergeHi(base1, len1, base2, len2)
|
||
|
if err != nil {
|
||
|
return errors.New(fmt.Sprintf("mergeHi: %v", err))
|
||
|
}
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Locates the position at which to insert the specified key into the
|
||
|
* specified sorted range; if the range contains an element equal to key,
|
||
|
* returns the index of the leftmost equal element.
|
||
|
*
|
||
|
* @param key the key whose insertion point to search for
|
||
|
* @param a the array in which to search
|
||
|
* @param base the index of the first element in the range
|
||
|
* @param len the length of the range; must be > 0
|
||
|
* @param hint the index at which to begin the search, 0 <= hint < n.
|
||
|
* The closer hint is to the result, the faster this method will run.
|
||
|
* @param c the comparator used to order the range, and to search
|
||
|
* @return the int k, 0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
|
||
|
* pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
|
||
|
* In other words, key belongs at index b + k; or in other words,
|
||
|
* the first k elements of a should precede key, and the last n - k
|
||
|
* should follow it.
|
||
|
*/
|
||
|
func gallopLeft(key interface{}, a []interface{}, base, len, hint int, c LessThan) (int, error) {
|
||
|
if len <= 0 || hint < 0 || hint >= len {
|
||
|
return 0, errors.New(" len > 0 && hint >= 0 && hint < len;")
|
||
|
}
|
||
|
lastOfs := 0
|
||
|
ofs := 1
|
||
|
|
||
|
if c(a[base+hint], key) {
|
||
|
// Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
|
||
|
maxOfs := len - hint
|
||
|
for ofs < maxOfs && c(a[base+hint+ofs], key) {
|
||
|
lastOfs = ofs
|
||
|
ofs = (ofs << 1) + 1
|
||
|
if ofs <= 0 { // int overflow
|
||
|
ofs = maxOfs
|
||
|
}
|
||
|
}
|
||
|
if ofs > maxOfs {
|
||
|
ofs = maxOfs
|
||
|
}
|
||
|
|
||
|
// Make offsets relative to base
|
||
|
lastOfs += hint
|
||
|
ofs += hint
|
||
|
} else { // key <= a[base + hint]
|
||
|
// Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
|
||
|
maxOfs := hint + 1
|
||
|
for ofs < maxOfs && !c(a[base+hint-ofs], key) {
|
||
|
lastOfs = ofs
|
||
|
ofs = (ofs << 1) + 1
|
||
|
if ofs <= 0 { // int overflow
|
||
|
ofs = maxOfs
|
||
|
}
|
||
|
}
|
||
|
if ofs > maxOfs {
|
||
|
ofs = maxOfs
|
||
|
}
|
||
|
|
||
|
// Make offsets relative to base
|
||
|
tmp := lastOfs
|
||
|
lastOfs = hint - ofs
|
||
|
ofs = hint - tmp
|
||
|
}
|
||
|
|
||
|
if -1 > lastOfs || lastOfs >= ofs || ofs > len {
|
||
|
return 0, errors.New(" -1 <= lastOfs && lastOfs < ofs && ofs <= len;")
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
|
||
|
* to the right of lastOfs but no farther right than ofs. Do a binary
|
||
|
* search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
|
||
|
*/
|
||
|
lastOfs++
|
||
|
for lastOfs < ofs {
|
||
|
m := lastOfs + (ofs-lastOfs)/2
|
||
|
|
||
|
if c(a[base+m], key) {
|
||
|
lastOfs = m + 1 // a[base + m] < key
|
||
|
} else {
|
||
|
ofs = m // key <= a[base + m]
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if lastOfs != ofs {
|
||
|
return 0, errors.New(" lastOfs == ofs") // so a[base + ofs - 1] < key <= a[base + ofs]
|
||
|
}
|
||
|
return ofs, nil
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Like gallopLeft, except that if the range contains an element equal to
|
||
|
* key, gallopRight returns the index after the rightmost equal element.
|
||
|
*
|
||
|
* @param key the key whose insertion point to search for
|
||
|
* @param a the array in which to search
|
||
|
* @param base the index of the first element in the range
|
||
|
* @param len the length of the range; must be > 0
|
||
|
* @param hint the index at which to begin the search, 0 <= hint < n.
|
||
|
* The closer hint is to the result, the faster this method will run.
|
||
|
* @param c the comparator used to order the range, and to search
|
||
|
* @return the int k, 0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
|
||
|
*/
|
||
|
func gallopRight(key interface{}, a []interface{}, base, len, hint int, c LessThan) (int, error) {
|
||
|
if len <= 0 || hint < 0 || hint >= len {
|
||
|
return 0, errors.New(" len > 0 && hint >= 0 && hint < len;")
|
||
|
}
|
||
|
|
||
|
ofs := 1
|
||
|
lastOfs := 0
|
||
|
if c(key, a[base+hint]) {
|
||
|
// Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
|
||
|
maxOfs := hint + 1
|
||
|
for ofs < maxOfs && c(key, a[base+hint-ofs]) {
|
||
|
lastOfs = ofs
|
||
|
ofs = (ofs << 1) + 1
|
||
|
if ofs <= 0 { // int overflow
|
||
|
ofs = maxOfs
|
||
|
}
|
||
|
}
|
||
|
if ofs > maxOfs {
|
||
|
ofs = maxOfs
|
||
|
}
|
||
|
|
||
|
// Make offsets relative to b
|
||
|
tmp := lastOfs
|
||
|
lastOfs = hint - ofs
|
||
|
ofs = hint - tmp
|
||
|
} else { // a[b + hint] <= key
|
||
|
// Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
|
||
|
maxOfs := len - hint
|
||
|
for ofs < maxOfs && !c(key, a[base+hint+ofs]) {
|
||
|
lastOfs = ofs
|
||
|
ofs = (ofs << 1) + 1
|
||
|
if ofs <= 0 { // int overflow
|
||
|
ofs = maxOfs
|
||
|
}
|
||
|
}
|
||
|
if ofs > maxOfs {
|
||
|
ofs = maxOfs
|
||
|
}
|
||
|
|
||
|
// Make offsets relative to b
|
||
|
lastOfs += hint
|
||
|
ofs += hint
|
||
|
}
|
||
|
if -1 > lastOfs || lastOfs >= ofs || ofs > len {
|
||
|
return 0, errors.New("-1 <= lastOfs && lastOfs < ofs && ofs <= len")
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
|
||
|
* the right of lastOfs but no farther right than ofs. Do a binary
|
||
|
* search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
|
||
|
*/
|
||
|
lastOfs++
|
||
|
for lastOfs < ofs {
|
||
|
m := lastOfs + (ofs-lastOfs)/2
|
||
|
|
||
|
if c(key, a[base+m]) {
|
||
|
ofs = m // key < a[b + m]
|
||
|
} else {
|
||
|
lastOfs = m + 1 // a[b + m] <= key
|
||
|
}
|
||
|
}
|
||
|
if lastOfs != ofs {
|
||
|
return 0, errors.New(" lastOfs == ofs") // so a[b + ofs - 1] <= key < a[b + ofs]
|
||
|
}
|
||
|
return ofs, nil
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Merges two adjacent runs in place, in a stable fashion. The first
|
||
|
* element of the first run must be greater than the first element of the
|
||
|
* second run (a[base1] > a[base2]), and the last element of the first run
|
||
|
* (a[base1 + len1-1]) must be greater than all elements of the second run.
|
||
|
*
|
||
|
* For performance, this method should be called only when len1 <= len2;
|
||
|
* its twin, mergeHi should be called if len1 >= len2. (Either method
|
||
|
* may be called if len1 == len2.)
|
||
|
*
|
||
|
* @param base1 index of first element in first run to be merged
|
||
|
* @param len1 length of first run to be merged (must be > 0)
|
||
|
* @param base2 index of first element in second run to be merged
|
||
|
* (must be aBase + aLen)
|
||
|
* @param len2 length of second run to be merged (must be > 0)
|
||
|
*/
|
||
|
func (self *timSortHandler) mergeLo(base1, len1, base2, len2 int) (err error) {
|
||
|
if len1 <= 0 || len2 <= 0 || base1+len1 != base2 {
|
||
|
return errors.New(" len1 > 0 && len2 > 0 && base1 + len1 == base2")
|
||
|
}
|
||
|
|
||
|
// Copy first run into temp array
|
||
|
a := self.a // For performance
|
||
|
tmp := self.ensureCapacity(len1)
|
||
|
|
||
|
copy(tmp, a[base1:base1+len1])
|
||
|
|
||
|
cursor1 := 0 // Indexes into tmp array
|
||
|
cursor2 := base2 // Indexes int a
|
||
|
dest := base1 // Indexes int a
|
||
|
|
||
|
// Move first element of second run and deal with degenerate cases
|
||
|
a[dest] = a[cursor2]
|
||
|
dest++
|
||
|
cursor2++
|
||
|
len2--
|
||
|
if len2 == 0 {
|
||
|
copy(a[dest:dest+len1], tmp)
|
||
|
return
|
||
|
}
|
||
|
if len1 == 1 {
|
||
|
copy(a[dest:dest+len2], a[cursor2:cursor2+len2])
|
||
|
a[dest+len2] = tmp[cursor1] // Last elt of run 1 to end of merge
|
||
|
return
|
||
|
}
|
||
|
|
||
|
lt := self.lt // Use local variable for performance
|
||
|
minGallop := self.minGallop // " " " " "
|
||
|
|
||
|
outer:
|
||
|
for {
|
||
|
count1 := 0 // Number of times in a row that first run won
|
||
|
count2 := 0 // Number of times in a row that second run won
|
||
|
|
||
|
/*
|
||
|
* Do the straightforward thing until (if ever) one run starts
|
||
|
* winning consistently.
|
||
|
*/
|
||
|
for {
|
||
|
if len1 <= 1 || len2 <= 0 {
|
||
|
return errors.New(" len1 > 1 && len2 > 0")
|
||
|
}
|
||
|
|
||
|
if lt(a[cursor2], tmp[cursor1]) {
|
||
|
a[dest] = a[cursor2]
|
||
|
dest++
|
||
|
cursor2++
|
||
|
count2++
|
||
|
count1 = 0
|
||
|
len2--
|
||
|
if len2 == 0 {
|
||
|
break outer
|
||
|
}
|
||
|
} else {
|
||
|
a[dest] = tmp[cursor1]
|
||
|
dest++
|
||
|
cursor1++
|
||
|
count1++
|
||
|
count2 = 0
|
||
|
len1--
|
||
|
if len1 == 1 {
|
||
|
break outer
|
||
|
}
|
||
|
}
|
||
|
if (count1 | count2) >= minGallop {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* One run is winning so consistently that galloping may be a
|
||
|
* huge win. So try that, and continue galloping until (if ever)
|
||
|
* neither run appears to be winning consistently anymore.
|
||
|
*/
|
||
|
for {
|
||
|
if len1 <= 1 || len2 <= 0 {
|
||
|
return errors.New("len1 > 1 && len2 > 0")
|
||
|
}
|
||
|
count1, err = gallopRight(a[cursor2], tmp, cursor1, len1, 0, lt)
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
if count1 != 0 {
|
||
|
copy(a[dest:dest+count1], tmp[cursor1:cursor1+count1])
|
||
|
dest += count1
|
||
|
cursor1 += count1
|
||
|
len1 -= count1
|
||
|
if len1 <= 1 { // len1 == 1 || len1 == 0
|
||
|
break outer
|
||
|
}
|
||
|
}
|
||
|
a[dest] = a[cursor2]
|
||
|
dest++
|
||
|
cursor2++
|
||
|
len2--
|
||
|
if len2 == 0 {
|
||
|
break outer
|
||
|
}
|
||
|
|
||
|
count2, err = gallopLeft(tmp[cursor1], a, cursor2, len2, 0, lt)
|
||
|
if err != nil {
|
||
|
return
|
||
|
}
|
||
|
if count2 != 0 {
|
||
|
copy(a[dest:dest+count2], a[cursor2:cursor2+count2])
|
||
|
dest += count2
|
||
|
cursor2 += count2
|
||
|
len2 -= count2
|
||
|
if len2 == 0 {
|
||
|
break outer
|
||
|
}
|
||
|
}
|
||
|
a[dest] = tmp[cursor1]
|
||
|
dest++
|
||
|
cursor1++
|
||
|
len1--
|
||
|
if len1 == 1 {
|
||
|
break outer
|
||
|
}
|
||
|
minGallop--
|
||
|
if count1 < _MIN_GALLOP && count2 < _MIN_GALLOP {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
if minGallop < 0 {
|
||
|
minGallop = 0
|
||
|
}
|
||
|
minGallop += 2 // Penalize for leaving gallop mode
|
||
|
} // End of "outer" loop
|
||
|
|
||
|
if minGallop < 1 {
|
||
|
minGallop = 1
|
||
|
}
|
||
|
self.minGallop = minGallop // Write back to field
|
||
|
|
||
|
if len1 == 1 {
|
||
|
|
||
|
if len2 <= 0 {
|
||
|
return errors.New(" len2 > 0;")
|
||
|
}
|
||
|
copy(a[dest:dest+len2], a[cursor2:cursor2+len2])
|
||
|
a[dest+len2] = tmp[cursor1] // Last elt of run 1 to end of merge
|
||
|
} else if len1 == 0 {
|
||
|
return errors.New("Comparison method violates its general contract!")
|
||
|
} else {
|
||
|
if len2 != 0 {
|
||
|
return errors.New("len2 == 0;")
|
||
|
}
|
||
|
if len1 <= 1 {
|
||
|
return errors.New(" len1 > 1;")
|
||
|
}
|
||
|
|
||
|
copy(a[dest:dest+len1], tmp[cursor1:cursor1+len1])
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Like mergeLo, except that this method should be called only if
|
||
|
* len1 >= len2; mergeLo should be called if len1 <= len2. (Either method
|
||
|
* may be called if len1 == len2.)
|
||
|
*
|
||
|
* @param base1 index of first element in first run to be merged
|
||
|
* @param len1 length of first run to be merged (must be > 0)
|
||
|
* @param base2 index of first element in second run to be merged
|
||
|
* (must be aBase + aLen)
|
||
|
* @param len2 length of second run to be merged (must be > 0)
|
||
|
*/
|
||
|
func (self *timSortHandler) mergeHi(base1, len1, base2, len2 int) (err error) {
|
||
|
if len1 <= 0 || len2 <= 0 || base1+len1 != base2 {
|
||
|
return errors.New("len1 > 0 && len2 > 0 && base1 + len1 == base2;")
|
||
|
}
|
||
|
|
||
|
// Copy second run into temp array
|
||
|
a := self.a // For performance
|
||
|
tmp := self.ensureCapacity(len2)
|
||
|
|
||
|
copy(tmp, a[base2:base2+len2])
|
||
|
|
||
|
cursor1 := base1 + len1 - 1 // Indexes into a
|
||
|
cursor2 := len2 - 1 // Indexes into tmp array
|
||
|
dest := base2 + len2 - 1 // Indexes into a
|
||
|
|
||
|
// Move last element of first run and deal with degenerate cases
|
||
|
a[dest] = a[cursor1]
|
||
|
dest--
|
||
|
cursor1--
|
||
|
len1--
|
||
|
if len1 == 0 {
|
||
|
dest -= len2 - 1
|
||
|
copy(a[dest:dest+len2], tmp)
|
||
|
return
|
||
|
}
|
||
|
if len2 == 1 {
|
||
|
dest -= len1 - 1
|
||
|
cursor1 -= len1 - 1
|
||
|
copy(a[dest:dest+len1], a[cursor1:cursor1+len1])
|
||
|
a[dest-1] = tmp[cursor2]
|
||
|
return
|
||
|
}
|
||
|
|
||
|
lt := self.lt // Use local variable for performance
|
||
|
minGallop := self.minGallop // " " " " "
|
||
|
|
||
|
outer:
|
||
|
for {
|
||
|
count1 := 0 // Number of times in a row that first run won
|
||
|
count2 := 0 // Number of times in a row that second run won
|
||
|
|
||
|
/*
|
||
|
* Do the straightforward thing until (if ever) one run
|
||
|
* appears to win consistently.
|
||
|
*/
|
||
|
for {
|
||
|
if len1 <= 0 || len2 <= 1 {
|
||
|
return errors.New(" len1 > 0 && len2 > 1;")
|
||
|
}
|
||
|
if lt(tmp[cursor2], a[cursor1]) {
|
||
|
a[dest] = a[cursor1]
|
||
|
dest--
|
||
|
cursor1--
|
||
|
count1++
|
||
|
count2 = 0
|
||
|
len1--
|
||
|
if len1 == 0 {
|
||
|
break outer
|
||
|
}
|
||
|
} else {
|
||
|
a[dest] = tmp[cursor2]
|
||
|
dest--
|
||
|
cursor2--
|
||
|
count2++
|
||
|
count1 = 0
|
||
|
len2--
|
||
|
if len2 == 1 {
|
||
|
break outer
|
||
|
}
|
||
|
}
|
||
|
if (count1 | count2) >= minGallop {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* One run is winning so consistently that galloping may be a
|
||
|
* huge win. So try that, and continue galloping until (if ever)
|
||
|
* neither run appears to be winning consistently anymore.
|
||
|
*/
|
||
|
for {
|
||
|
if len1 <= 0 || len2 <= 1 {
|
||
|
return errors.New(" len1 > 0 && len2 > 1;")
|
||
|
}
|
||
|
if gr, err := gallopRight(tmp[cursor2], a, base1, len1, len1-1, lt); err == nil {
|
||
|
count1 = len1 - gr
|
||
|
} else {
|
||
|
return err
|
||
|
}
|
||
|
if count1 != 0 {
|
||
|
dest -= count1
|
||
|
cursor1 -= count1
|
||
|
len1 -= count1
|
||
|
copy(a[dest+1:dest+1+count1], a[cursor1+1:cursor1+1+count1])
|
||
|
if len1 == 0 {
|
||
|
break outer
|
||
|
}
|
||
|
}
|
||
|
a[dest] = tmp[cursor2]
|
||
|
dest--
|
||
|
cursor2--
|
||
|
len2--
|
||
|
if len2 == 1 {
|
||
|
break outer
|
||
|
}
|
||
|
|
||
|
if gl, err := gallopLeft(a[cursor1], tmp, 0, len2, len2-1, lt); err == nil {
|
||
|
count2 = len2 - gl
|
||
|
} else {
|
||
|
return err
|
||
|
}
|
||
|
if count2 != 0 {
|
||
|
dest -= count2
|
||
|
cursor2 -= count2
|
||
|
len2 -= count2
|
||
|
copy(a[dest+1:dest+1+count2], tmp[cursor2+1:cursor2+1+count2])
|
||
|
if len2 <= 1 { // len2 == 1 || len2 == 0
|
||
|
break outer
|
||
|
}
|
||
|
}
|
||
|
a[dest] = a[cursor1]
|
||
|
dest--
|
||
|
cursor1--
|
||
|
len1--
|
||
|
if len1 == 0 {
|
||
|
break outer
|
||
|
}
|
||
|
minGallop--
|
||
|
|
||
|
if count1 < _MIN_GALLOP && count2 < _MIN_GALLOP {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
if minGallop < 0 {
|
||
|
minGallop = 0
|
||
|
}
|
||
|
minGallop += 2 // Penalize for leaving gallop mode
|
||
|
} // End of "outer" loop
|
||
|
|
||
|
if minGallop < 1 {
|
||
|
minGallop = 1
|
||
|
}
|
||
|
|
||
|
self.minGallop = minGallop // Write back to field
|
||
|
|
||
|
if len2 == 1 {
|
||
|
if len1 <= 0 {
|
||
|
return errors.New(" len1 > 0;")
|
||
|
}
|
||
|
dest -= len1
|
||
|
cursor1 -= len1
|
||
|
|
||
|
copy(a[dest+1:dest+1+len1], a[cursor1+1:cursor1+1+len1])
|
||
|
a[dest] = tmp[cursor2] // Move first elt of run2 to front of merge
|
||
|
} else if len2 == 0 {
|
||
|
return errors.New("Comparison method violates its general contract!")
|
||
|
} else {
|
||
|
if len1 != 0 {
|
||
|
return errors.New("len1 == 0;")
|
||
|
}
|
||
|
|
||
|
if len2 <= 0 {
|
||
|
return errors.New(" len2 > 0;")
|
||
|
}
|
||
|
|
||
|
copy(a[dest-(len2-1):dest+1], tmp)
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Ensures that the external array tmp has at least the specified
|
||
|
* number of elements, increasing its size if necessary. The size
|
||
|
* increases exponentially to ensure amortized linear time complexity.
|
||
|
*
|
||
|
* @param minCapacity the minimum required capacity of the tmp array
|
||
|
* @return tmp, whether or not it grew
|
||
|
*/
|
||
|
func (self *timSortHandler) ensureCapacity(minCapacity int) []interface{} {
|
||
|
if len(self.tmp) < minCapacity {
|
||
|
// Compute smallest power of 2 > minCapacity
|
||
|
newSize := minCapacity
|
||
|
newSize |= newSize >> 1
|
||
|
newSize |= newSize >> 2
|
||
|
newSize |= newSize >> 4
|
||
|
newSize |= newSize >> 8
|
||
|
newSize |= newSize >> 16
|
||
|
newSize++
|
||
|
|
||
|
if newSize < 0 { // Not bloody likely!
|
||
|
newSize = minCapacity
|
||
|
} else {
|
||
|
ns := len(self.a) / 2
|
||
|
if ns < newSize {
|
||
|
newSize = ns
|
||
|
}
|
||
|
}
|
||
|
|
||
|
self.tmp = make([]interface{}, newSize)
|
||
|
}
|
||
|
|
||
|
return self.tmp
|
||
|
}
|