2
0
mirror of https://github.com/alew3/faceit_live3 synced 2024-11-10 01:11:01 +00:00
faceit_live3/faceit_live.py
Alessandro Cauduro 9b6dfa2a4e more cleanups
2020-04-13 00:55:11 -03:00

285 lines
8.9 KiB
Python

import imageio
import numpy as np
import pandas as pd
from skimage.transform import resize
import warnings
import sys
import cv2
import time
import PIL.Image as Image
import PIL.ImageFilter
import io
from io import BytesIO
import pyautogui
import os
import glob
from argparse import Namespace
import argparse
import timeit
import torch
warnings.filterwarnings("ignore")
############## setup ####
stream = True
media_path = './media/'
model_path = 'model/'
parser = argparse.ArgumentParser()
parser.add_argument('--webcam_id', type = int, default = 0)
parser.add_argument('--stream_id', type = int, default = 1)
parser.add_argument('--gpu_id', type = int, default = 0)
parser.add_argument('--system', type = str, default = "win")
args = parser.parse_args()
webcam_id = args.webcam_id
gpu_id = args.gpu_id
stream_id = args.stream_id
system = args.system
webcam_height = 480
webcam_width = 640
screen_width, screen_height = pyautogui.size()
img_shape = [256, 256, 0]
if system=="linux":
print("Linux version, importing FakeWebCam")
import pyfakewebcam
first_order_path = 'first-order-model/'
sys.path.insert(0,first_order_path)
reset = True
# import methods from first-order-model
import demo
from demo import load_checkpoints, make_animation, tqdm
# prevent tqdm from outputting to console
demo.tqdm = lambda *i, **kwargs: i[0]
print("CUDA is available: ",torch.cuda.is_available())
if (torch.cuda.is_available()):
torch.cuda.device("cuda:" + str(gpu_id))
print("Device Name:",torch.cuda.get_device_name(gpu_id))
print("Device Count:",torch.cuda.device_count())
print("CUDA: ",torch.version.cuda)
print("cuDNN",torch.backends.cudnn.version())
print("Device",torch.cuda.current_device())
img_list = []
print("Scanning /media folder for images to use...")
for filename in os.listdir(media_path):
if filename.endswith(".jpg") or filename.endswith(".jpeg") or filename.endswith(".png"):
img_list.append(os.path.join(media_path, filename))
print(os.path.join(media_path, filename))
#print(img_list, len(img_list))
############## end setup ####
def main():
global source_image
source_image = readnextimage(0)
# start streaming
if system=="linux":
camera = pyfakewebcam.FakeWebcam(f'/dev/video{stream_id}', webcam_width, webcam_height)
camera.print_capabilities()
print(f"Fake webcam created on /dev/video{stream_id}. Use Firefox and join a Google Meeting to test.")
# capture webcam
video_capture = cv2.VideoCapture(webcam_id)
time.sleep(1)
width = video_capture.get(3) # float
height = video_capture.get(4) # float
print("webcam dimensions = {} x {}".format(width,height))
# load models
net = load_face_model()
generator, kp_detector = demo.load_checkpoints(config_path=f'{first_order_path}config/vox-adv-256.yaml', checkpoint_path=f'{model_path}/vox-adv-cpk.pth.tar')
# create windows
cv2.namedWindow('Face', cv2.WINDOW_GUI_NORMAL) # extracted face
cv2.moveWindow('Face', int(screen_width//2)-150, 100)
cv2.resizeWindow('Face', 256,256)
cv2.namedWindow('DeepFake', cv2.WINDOW_GUI_NORMAL) # face transformation
cv2.moveWindow('DeepFake', int(screen_width//2)+150, 100)
cv2.resizeWindow('DeepFake', 256, 256)
cv2.namedWindow('Stream', cv2.WINDOW_GUI_NORMAL) # rendered to fake webcam
cv2.moveWindow('Stream', int(screen_width//2)-int(webcam_width//2), 400)
cv2.resizeWindow('Stream', webcam_width,webcam_height)
print("Press C to center Webcam, Press B/N for previous/next image in media directory, T to alter between relative and absolute transformation, Q to quit")
x1,y1,x2,y2 = [0,0,0,0]
relative = True
previous = None
while True:
ret, frame = video_capture.read()
frame = cv2.resize(frame, (640, 480))
frame = cv2.flip(frame,1)
if (previous is None or reset is True):
x1,y1,x2,y2 = find_face_cut(net,frame)
previous = cut_face_window(x1,y1,x2,y2,frame)
reset = False
#img_shape = source_image.shape
#cv2.resizeWindow('DeepFake', int(img_shape[1] // img_shape[0] * 256), 256)
#cv2.imshow('Previous',previous)
curr_face = cut_face_window(x1,y1,x2,y2,frame.copy())
# cv2.imshow('Previous',previous)
# cv2.imshow('Curr Face',curr_face)
# cv2.imshow('Source Image',source_image)
deep_fake = process_image(source_image,previous,curr_face,net, generator, kp_detector, relative)
#print("deep_fake",deep_fake.shape)
deep_fake = cv2.cvtColor(deep_fake, cv2.COLOR_RGB2BGR)
rgb = cv2.resize(deep_fake,(int(source_image.shape[0] // source_image.shape[1] * 480),480))
# pad image
x_border = int((640-(img_shape[1] // img_shape[0] * 480))//2)
#y_border = int((480-(img_shape[0] // img_shape[1] * 640))//2)
stream_v = cv2.copyMakeBorder(rgb, 0, 0, x_border if x_border >=0 else 0, x_border if x_border >=0 else 0, cv2.BORDER_CONSTANT)
#cv2.imshow('Webcam', frame)
cv2.imshow('Face', curr_face)
cv2.imshow('DeepFake', deep_fake)
#cv2.imshow('Previous', previous)
#cv2.imshow('RGB', rgb)
#cv2.imshow('Source Image', source_image)
#time.sleep(1/30.0)
cv2.imshow('Stream',stream_v)
# stream to fakewebcam
if system=="linux":
stream_v = cv2.flip(stream_v,1)
stream_v = cv2.cvtColor(stream_v, cv2.COLOR_BGR2RGB)
stream_v = (stream_v*255).astype(np.uint8)
#print("output to fakecam")
camera.schedule_frame(stream_v)
k = cv2.waitKey(1)
# Hit 'q' on the keyboard to quit!
if k & 0xFF == ord('q'):
print("Quiting")
video_capture.release()
break
elif k==ord('c'):
# center
print("Centering the image")
reset = True
elif k==ord('b'):
# previous image
print("Loading previous image")
source_image = readpreviousimage()
reset = True
elif k==ord('n'):
# next image
print("Loading next image")
source_image = readnextimage()
reset = True
elif k==ord('t'):
# rotate
relative = not relative
print("Changing transform mode")
cv2.destroyAllWindows()
exit()
# transform face with first-order-model
def process_image(source_image,base,current,net, generator,kp_detector,relative):
predictions = make_animation(source_image, [base,current], generator, kp_detector, relative=relative, adapt_movement_scale=False)
return predictions[1]
def load_face_model():
modelFile = f"{model_path}/res10_300x300_ssd_iter_140000.caffemodel"
configFile = f"{model_path}./deploy.prototxt.txt"
net = cv2.dnn.readNetFromCaffe(configFile, modelFile)
return net
def cut_face_window(x1,y1,x2,y2,frame):
frame = frame.copy()
frame = frame[y1:y2,x1:x2]
face = resize(frame, (256, 256))[..., :3]
return face
# find the face in webcam stream and center a 256x256 window
def find_face_cut(net,face):
blob = cv2.dnn.blobFromImage(face, 1.0, (300, 300), [104, 117, 123], False, False)
frameWidth = 640
frameHeight = 480
net.setInput(blob)
detections = net.forward()
bboxes = []
face_found = False
for i in range(detections.shape[2]):
#print(i)
confidence = detections[0, 0, i, 2]
if confidence > 0.9:
x1 = (int(detections[0, 0, i, 3] * frameWidth)//2)*2
y1 = (int(detections[0, 0, i, 4] * frameHeight)//2)*2
x2 = (int(detections[0, 0, i, 5] * frameWidth)//2)*2
y2 = (int(detections[0, 0, i, 6] * frameHeight)//2)*2
face_margin_w = int(256 - (abs(x1-x2)))
face_margin_h = int(256 - (abs(y1-y2)))
cut_x1 = x1 - int(face_margin_w//2)
cut_y1 = y1 - int(2*face_margin_h//3)
cut_x2 = x2 + int(face_margin_w//2)
cut_y2 = y2 + face_margin_h - int(2*face_margin_h//3)
face_found = True
break
if not face_found:
print("No face detected in video")
# let's just use the middle section of the image
cut_x1,cut_y1,cut_x2,cut_y2 = 112,192,368,448
else:
print(f'Found face at: ({x1,y1}) ({x2},{y2} width:{(x2-x1)} height: {(y2-y1)})')
print(f'Cutting at: ({cut_x1,cut_y1}) ({cut_x2},{cut_y2} width:{(cut_x2-cut_x1)} height: {(cut_y2-cut_y1)})')
return cut_x1,cut_y1,cut_x2,cut_y2
def readimage():
global img_list,img_shape
img = imageio.imread(img_list[pos])
img = resize(img, (256, 256))[..., :3]
return img
def readpreviousimage():
global pos
if pos<len(img_list)-1:
pos=pos-1
else:
pos=0
return readimage()
def readnextimage(position=-1):
global pos
if (position != -1):
pos = position
else:
if pos<len(img_list)-1:
pos=pos+1
else:
pos=0
return readimage()
main()