import requests import os from openai import OpenAI import pyperclip import sys from dotenv import load_dotenv from requests.exceptions import HTTPError from tqdm import tqdm current_directory = os.path.dirname(os.path.realpath(__file__)) config_directory = os.path.expanduser("~/.config/fabric") env_file = os.path.join(config_directory, ".env") class Standalone: def __init__(self, args, pattern="", env_file="~/.config/fabric/.env"): # Expand the tilde to the full path env_file = os.path.expanduser(env_file) load_dotenv(env_file) try: apikey = os.environ["OPENAI_API_KEY"] self.client = OpenAI() self.client.api_key = apikey except KeyError: print("OPENAI_API_KEY not found in environment variables.") except FileNotFoundError: print("No API key found. Use the --apikey option to set the key") sys.exit() self.config_pattern_directory = config_directory self.pattern = pattern self.args = args def streamMessage(self, input_data: str): wisdomFilePath = os.path.join( config_directory, f"patterns/{self.pattern}/system.md" ) user_message = {"role": "user", "content": f"{input_data}"} wisdom_File = os.path.join(current_directory, wisdomFilePath) buffer = "" if self.pattern: try: with open(wisdom_File, "r") as f: system = f.read() system_message = {"role": "system", "content": system} messages = [system_message, user_message] except FileNotFoundError: print("pattern not found") return else: messages = [user_message] try: stream = self.client.chat.completions.create( model="", messages=messages, temperature=0.0, top_p=1, frequency_penalty=0.1, presence_penalty=0.1, stream=True, ) for chunk in stream: if chunk.choices[0].delta.content is not None: char = chunk.choices[0].delta.content buffer += char if char not in ["\n", " "]: print(char, end="") elif char == " ": print(" ", end="") # Explicitly handle spaces elif char == "\n": print() # Handle newlines sys.stdout.flush() except Exception as e: print(f"Error: {e}") print(e) if self.args.copy: pyperclip.copy(buffer) if self.args.output: with open(self.args.output, "w") as f: f.write(buffer) def sendMessage(self, input_data: str): wisdomFilePath = os.path.join( config_directory, f"patterns/{self.pattern}/system.md" ) user_message = {"role": "user", "content": f"{input_data}"} wisdom_File = os.path.join(current_directory, wisdomFilePath) if self.pattern: try: with open(wisdom_File, "r") as f: system = f.read() system_message = {"role": "system", "content": system} messages = [system_message, user_message] except FileNotFoundError: print("pattern not found") return else: messages = [user_message] try: response = self.client.chat.completions.create( model="gpt-4-turbo-preview", messages=messages, temperature=0.0, top_p=1, frequency_penalty=0.1, presence_penalty=0.1, ) print(response) print(response.choices[0].message.content) except Exception as e: print(f"Error: {e}") print(e) if self.args.copy: pyperclip.copy(response.choices[0].message.content) if self.args.output: with open(self.args.output, "w") as f: f.write(response.choices[0].message.content) class Update: def __init__(self): self.root_api_url = "https://api.github.com/repos/danielmiessler/fabric/contents/patterns?ref=main" self.config_directory = os.path.expanduser("~/.config/fabric") self.pattern_directory = os.path.join(self.config_directory, "patterns") os.makedirs(self.pattern_directory, exist_ok=True) self.update_patterns() # Call the update process from a method. def update_patterns(self): try: self.progress_bar = tqdm(desc="Downloading Patterns…", unit="file") self.get_github_directory_contents( self.root_api_url, self.pattern_directory ) # Close progress bar on success before printing the message. self.progress_bar.close() except HTTPError as e: # Ensure progress bar is closed on HTTPError as well. self.progress_bar.close() if e.response.status_code == 403: print( "GitHub API rate limit exceeded. Please wait before trying again." ) sys.exit() else: print(f"Failed to download patterns due to an HTTP error: {e}") sys.exit() # Exit after handling the error. def download_file(self, url, local_path): try: response = requests.get(url) response.raise_for_status() with open(local_path, "wb") as f: f.write(response.content) self.progress_bar.update(1) except HTTPError as e: print(f"Failed to download file {url}. HTTP error: {e}") sys.exit() def process_item(self, item, local_dir): if item["type"] == "file": self.download_file( item["download_url"], os.path.join(local_dir, item["name"]) ) elif item["type"] == "dir": new_dir = os.path.join(local_dir, item["name"]) os.makedirs(new_dir, exist_ok=True) self.get_github_directory_contents(item["url"], new_dir) def get_github_directory_contents(self, api_url, local_dir): try: response = requests.get(api_url) response.raise_for_status() jsonList = response.json() for item in jsonList: self.process_item(item, local_dir) except HTTPError as e: if e.response.status_code == 403: print( "GitHub API rate limit exceeded. Please wait before trying again." ) self.progress_bar.close() # Ensure the progress bar is cleaned up properly else: print(f"Failed to fetch directory contents due to an HTTP error: {e}") class Setup: def __init__(self): self.config_directory = os.path.expanduser("~/.config/fabric") self.pattern_directory = os.path.join(self.config_directory, "patterns") os.makedirs(self.pattern_directory, exist_ok=True) self.env_file = os.path.join(self.config_directory, ".env") def api_key(self, api_key): if not os.path.exists(self.env_file): with open(self.env_file, "w") as f: f.write(f"OPENAI_API_KEY={api_key}") print(f"OpenAI API key set to {api_key}") def patterns(self): Update() sys.exit() def run(self): print("Welcome to Fabric. Let's get started.") apikey = input("Please enter your OpenAI API key\n") self.api_key(apikey.strip()) self.patterns()