mirror of
https://github.com/danielmiessler/fabric
synced 2024-11-08 07:11:06 +00:00
added agents
This commit is contained in:
parent
1c71ac790d
commit
a6aeb8ffed
1
.python-version
Normal file
1
.python-version
Normal file
@ -0,0 +1 @@
|
||||
3.10
|
1
installer/client/cli/agents/.python-version
Normal file
1
installer/client/cli/agents/.python-version
Normal file
@ -0,0 +1 @@
|
||||
3.10
|
81
installer/client/cli/agents/example.py
Normal file
81
installer/client/cli/agents/example.py
Normal file
@ -0,0 +1,81 @@
|
||||
from langchain_community.tools import DuckDuckGoSearchRun
|
||||
import os
|
||||
from crewai import Agent, Task, Crew, Process
|
||||
from dotenv import load_dotenv
|
||||
import os
|
||||
|
||||
current_directory = os.path.dirname(os.path.realpath(__file__))
|
||||
config_directory = os.path.expanduser("~/.config/fabric")
|
||||
env_file = os.path.join(config_directory, ".env")
|
||||
load_dotenv(env_file)
|
||||
os.environ['OPENAI_MODEL_NAME'] = 'gpt-4-0125-preview'
|
||||
|
||||
# You can choose to use a local model through Ollama for example. See https://docs.crewai.com/how-to/LLM-Connections/ for more information.
|
||||
# osOPENAI_API_BASE='http://localhost:11434/v1'
|
||||
# OPENAI_MODEL_NAME='openhermes' # Adjust based on available model
|
||||
# OPENAI_API_KEY=''
|
||||
|
||||
# Install duckduckgo-search for this example:
|
||||
# !pip install -U duckduckgo-search
|
||||
|
||||
search_tool = DuckDuckGoSearchRun()
|
||||
|
||||
# Define your agents with roles and goals
|
||||
researcher = Agent(
|
||||
role='Senior Research Analyst',
|
||||
goal='Uncover cutting-edge developments in AI and data science',
|
||||
backstory="""You work at a leading tech think tank.
|
||||
Your expertise lies in identifying emerging trends.
|
||||
You have a knack for dissecting complex data and presenting actionable insights.""",
|
||||
verbose=True,
|
||||
allow_delegation=False,
|
||||
tools=[search_tool]
|
||||
# You can pass an optional llm attribute specifying what mode you wanna use.
|
||||
# It can be a local model through Ollama / LM Studio or a remote
|
||||
# model like OpenAI, Mistral, Antrophic or others (https://docs.crewai.com/how-to/LLM-Connections/)
|
||||
#
|
||||
# import os
|
||||
#
|
||||
# OR
|
||||
#
|
||||
# from langchain_openai import ChatOpenAI
|
||||
# llm=ChatOpenAI(model_name="gpt-3.5", temperature=0.7)
|
||||
)
|
||||
writer = Agent(
|
||||
role='Tech Content Strategist',
|
||||
goal='Craft compelling content on tech advancements',
|
||||
backstory="""You are a renowned Content Strategist, known for your insightful and engaging articles.
|
||||
You transform complex concepts into compelling narratives.""",
|
||||
verbose=True,
|
||||
allow_delegation=True
|
||||
)
|
||||
|
||||
# Create tasks for your agents
|
||||
task1 = Task(
|
||||
description="""Conduct a comprehensive analysis of the latest advancements in AI in 2024.
|
||||
Identify key trends, breakthrough technologies, and potential industry impacts.""",
|
||||
expected_output="Full analysis report in bullet points",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
task2 = Task(
|
||||
description="""Using the insights provided, develop an engaging blog
|
||||
post that highlights the most significant AI advancements.
|
||||
Your post should be informative yet accessible, catering to a tech-savvy audience.
|
||||
Make it sound cool, avoid complex words so it doesn't sound like AI.""",
|
||||
expected_output="Full blog post of at least 4 paragraphs",
|
||||
agent=writer
|
||||
)
|
||||
|
||||
# Instantiate your crew with a sequential process
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[task1, task2],
|
||||
verbose=2, # You can set it to 1 or 2 to different logging levels
|
||||
)
|
||||
|
||||
# Get your crew to work!
|
||||
result = crew.kickoff()
|
||||
|
||||
print("######################")
|
||||
print(result)
|
89
installer/client/cli/agents/trip_planner/main.py
Normal file
89
installer/client/cli/agents/trip_planner/main.py
Normal file
@ -0,0 +1,89 @@
|
||||
from crewai import Crew
|
||||
from textwrap import dedent
|
||||
from .trip_agents import TripAgents
|
||||
from .trip_tasks import TripTasks
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
|
||||
current_directory = os.path.dirname(os.path.realpath(__file__))
|
||||
config_directory = os.path.expanduser("~/.config/fabric")
|
||||
env_file = os.path.join(config_directory, ".env")
|
||||
load_dotenv(env_file)
|
||||
os.environ['OPENAI_MODEL_NAME'] = 'gpt-4-0125-preview'
|
||||
|
||||
|
||||
class TripCrew:
|
||||
|
||||
def __init__(self, origin, cities, date_range, interests):
|
||||
self.cities = cities
|
||||
self.origin = origin
|
||||
self.interests = interests
|
||||
self.date_range = date_range
|
||||
|
||||
def run(self):
|
||||
agents = TripAgents()
|
||||
tasks = TripTasks()
|
||||
|
||||
city_selector_agent = agents.city_selection_agent()
|
||||
local_expert_agent = agents.local_expert()
|
||||
travel_concierge_agent = agents.travel_concierge()
|
||||
|
||||
identify_task = tasks.identify_task(
|
||||
city_selector_agent,
|
||||
self.origin,
|
||||
self.cities,
|
||||
self.interests,
|
||||
self.date_range
|
||||
)
|
||||
gather_task = tasks.gather_task(
|
||||
local_expert_agent,
|
||||
self.origin,
|
||||
self.interests,
|
||||
self.date_range
|
||||
)
|
||||
plan_task = tasks.plan_task(
|
||||
travel_concierge_agent,
|
||||
self.origin,
|
||||
self.interests,
|
||||
self.date_range
|
||||
)
|
||||
|
||||
crew = Crew(
|
||||
agents=[
|
||||
city_selector_agent, local_expert_agent, travel_concierge_agent
|
||||
],
|
||||
tasks=[identify_task, gather_task, plan_task],
|
||||
verbose=True
|
||||
)
|
||||
|
||||
result = crew.kickoff()
|
||||
return result
|
||||
|
||||
|
||||
class planner_cli:
|
||||
def ask(self):
|
||||
print("## Welcome to Trip Planner Crew")
|
||||
print('-------------------------------')
|
||||
location = input(
|
||||
dedent("""
|
||||
From where will you be traveling from?
|
||||
"""))
|
||||
cities = input(
|
||||
dedent("""
|
||||
What are the cities options you are interested in visiting?
|
||||
"""))
|
||||
date_range = input(
|
||||
dedent("""
|
||||
What is the date range you are interested in traveling?
|
||||
"""))
|
||||
interests = input(
|
||||
dedent("""
|
||||
What are some of your high level interests and hobbies?
|
||||
"""))
|
||||
|
||||
trip_crew = TripCrew(location, cities, date_range, interests)
|
||||
result = trip_crew.run()
|
||||
print("\n\n########################")
|
||||
print("## Here is you Trip Plan")
|
||||
print("########################\n")
|
||||
print(result)
|
@ -0,0 +1,38 @@
|
||||
import json
|
||||
import os
|
||||
|
||||
import requests
|
||||
from crewai import Agent, Task
|
||||
from langchain.tools import tool
|
||||
from unstructured.partition.html import partition_html
|
||||
|
||||
|
||||
class BrowserTools():
|
||||
|
||||
@tool("Scrape website content")
|
||||
def scrape_and_summarize_website(website):
|
||||
"""Useful to scrape and summarize a website content"""
|
||||
url = f"https://chrome.browserless.io/content?token={os.environ['BROWSERLESS_API_KEY']}"
|
||||
payload = json.dumps({"url": website})
|
||||
headers = {'cache-control': 'no-cache', 'content-type': 'application/json'}
|
||||
response = requests.request("POST", url, headers=headers, data=payload)
|
||||
elements = partition_html(text=response.text)
|
||||
content = "\n\n".join([str(el) for el in elements])
|
||||
content = [content[i:i + 8000] for i in range(0, len(content), 8000)]
|
||||
summaries = []
|
||||
for chunk in content:
|
||||
agent = Agent(
|
||||
role='Principal Researcher',
|
||||
goal=
|
||||
'Do amazing researches and summaries based on the content you are working with',
|
||||
backstory=
|
||||
"You're a Principal Researcher at a big company and you need to do a research about a given topic.",
|
||||
allow_delegation=False)
|
||||
task = Task(
|
||||
agent=agent,
|
||||
description=
|
||||
f'Analyze and summarize the content bellow, make sure to include the most relevant information in the summary, return only the summary nothing else.\n\nCONTENT\n----------\n{chunk}'
|
||||
)
|
||||
summary = task.execute()
|
||||
summaries.append(summary)
|
||||
return "\n\n".join(summaries)
|
@ -0,0 +1,15 @@
|
||||
from langchain.tools import tool
|
||||
|
||||
class CalculatorTools():
|
||||
|
||||
@tool("Make a calculation")
|
||||
def calculate(operation):
|
||||
"""Useful to perform any mathematical calculations,
|
||||
like sum, minus, multiplication, division, etc.
|
||||
The input to this tool should be a mathematical
|
||||
expression, a couple examples are `200*7` or `5000/2*10`
|
||||
"""
|
||||
try:
|
||||
return eval(operation)
|
||||
except SyntaxError:
|
||||
return "Error: Invalid syntax in mathematical expression"
|
@ -0,0 +1,37 @@
|
||||
import json
|
||||
import os
|
||||
|
||||
import requests
|
||||
from langchain.tools import tool
|
||||
|
||||
|
||||
class SearchTools():
|
||||
|
||||
@tool("Search the internet")
|
||||
def search_internet(query):
|
||||
"""Useful to search the internet
|
||||
about a a given topic and return relevant results"""
|
||||
top_result_to_return = 4
|
||||
url = "https://google.serper.dev/search"
|
||||
payload = json.dumps({"q": query})
|
||||
headers = {
|
||||
'X-API-KEY': os.environ['SERPER_API_KEY'],
|
||||
'content-type': 'application/json'
|
||||
}
|
||||
response = requests.request("POST", url, headers=headers, data=payload)
|
||||
# check if there is an organic key
|
||||
if 'organic' not in response.json():
|
||||
return "Sorry, I couldn't find anything about that, there could be an error with you serper api key."
|
||||
else:
|
||||
results = response.json()['organic']
|
||||
string = []
|
||||
for result in results[:top_result_to_return]:
|
||||
try:
|
||||
string.append('\n'.join([
|
||||
f"Title: {result['title']}", f"Link: {result['link']}",
|
||||
f"Snippet: {result['snippet']}", "\n-----------------"
|
||||
]))
|
||||
except KeyError:
|
||||
next
|
||||
|
||||
return '\n'.join(string)
|
45
installer/client/cli/agents/trip_planner/trip_agents.py
Normal file
45
installer/client/cli/agents/trip_planner/trip_agents.py
Normal file
@ -0,0 +1,45 @@
|
||||
from crewai import Agent
|
||||
|
||||
from .tools.browser_tools import BrowserTools
|
||||
from .tools.calculator_tools import CalculatorTools
|
||||
from .tools.search_tools import SearchTools
|
||||
|
||||
|
||||
class TripAgents():
|
||||
|
||||
def city_selection_agent(self):
|
||||
return Agent(
|
||||
role='City Selection Expert',
|
||||
goal='Select the best city based on weather, season, and prices',
|
||||
backstory='An expert in analyzing travel data to pick ideal destinations',
|
||||
tools=[
|
||||
SearchTools.search_internet,
|
||||
BrowserTools.scrape_and_summarize_website,
|
||||
],
|
||||
verbose=True)
|
||||
|
||||
def local_expert(self):
|
||||
return Agent(
|
||||
role='Local Expert at this city',
|
||||
goal='Provide the BEST insights about the selected city',
|
||||
backstory="""A knowledgeable local guide with extensive information
|
||||
about the city, it's attractions and customs""",
|
||||
tools=[
|
||||
SearchTools.search_internet,
|
||||
BrowserTools.scrape_and_summarize_website,
|
||||
],
|
||||
verbose=True)
|
||||
|
||||
def travel_concierge(self):
|
||||
return Agent(
|
||||
role='Amazing Travel Concierge',
|
||||
goal="""Create the most amazing travel itineraries with budget and
|
||||
packing suggestions for the city""",
|
||||
backstory="""Specialist in travel planning and logistics with
|
||||
decades of experience""",
|
||||
tools=[
|
||||
SearchTools.search_internet,
|
||||
BrowserTools.scrape_and_summarize_website,
|
||||
CalculatorTools.calculate,
|
||||
],
|
||||
verbose=True)
|
83
installer/client/cli/agents/trip_planner/trip_tasks.py
Normal file
83
installer/client/cli/agents/trip_planner/trip_tasks.py
Normal file
@ -0,0 +1,83 @@
|
||||
from crewai import Task
|
||||
from textwrap import dedent
|
||||
from datetime import date
|
||||
|
||||
|
||||
class TripTasks():
|
||||
|
||||
def identify_task(self, agent, origin, cities, interests, range):
|
||||
return Task(description=dedent(f"""
|
||||
Analyze and select the best city for the trip based
|
||||
on specific criteria such as weather patterns, seasonal
|
||||
events, and travel costs. This task involves comparing
|
||||
multiple cities, considering factors like current weather
|
||||
conditions, upcoming cultural or seasonal events, and
|
||||
overall travel expenses.
|
||||
|
||||
Your final answer must be a detailed
|
||||
report on the chosen city, and everything you found out
|
||||
about it, including the actual flight costs, weather
|
||||
forecast and attractions.
|
||||
{self.__tip_section()}
|
||||
|
||||
Traveling from: {origin}
|
||||
City Options: {cities}
|
||||
Trip Date: {range}
|
||||
Traveler Interests: {interests}
|
||||
"""),
|
||||
agent=agent)
|
||||
|
||||
def gather_task(self, agent, origin, interests, range):
|
||||
return Task(description=dedent(f"""
|
||||
As a local expert on this city you must compile an
|
||||
in-depth guide for someone traveling there and wanting
|
||||
to have THE BEST trip ever!
|
||||
Gather information about key attractions, local customs,
|
||||
special events, and daily activity recommendations.
|
||||
Find the best spots to go to, the kind of place only a
|
||||
local would know.
|
||||
This guide should provide a thorough overview of what
|
||||
the city has to offer, including hidden gems, cultural
|
||||
hotspots, must-visit landmarks, weather forecasts, and
|
||||
high level costs.
|
||||
|
||||
The final answer must be a comprehensive city guide,
|
||||
rich in cultural insights and practical tips,
|
||||
tailored to enhance the travel experience.
|
||||
{self.__tip_section()}
|
||||
|
||||
Trip Date: {range}
|
||||
Traveling from: {origin}
|
||||
Traveler Interests: {interests}
|
||||
"""),
|
||||
agent=agent)
|
||||
|
||||
def plan_task(self, agent, origin, interests, range):
|
||||
return Task(description=dedent(f"""
|
||||
Expand this guide into a a full 7-day travel
|
||||
itinerary with detailed per-day plans, including
|
||||
weather forecasts, places to eat, packing suggestions,
|
||||
and a budget breakdown.
|
||||
|
||||
You MUST suggest actual places to visit, actual hotels
|
||||
to stay and actual restaurants to go to.
|
||||
|
||||
This itinerary should cover all aspects of the trip,
|
||||
from arrival to departure, integrating the city guide
|
||||
information with practical travel logistics.
|
||||
|
||||
Your final answer MUST be a complete expanded travel plan,
|
||||
formatted as markdown, encompassing a daily schedule,
|
||||
anticipated weather conditions, recommended clothing and
|
||||
items to pack, and a detailed budget, ensuring THE BEST
|
||||
TRIP EVER, Be specific and give it a reason why you picked
|
||||
# up each place, what make them special! {self.__tip_section()}
|
||||
|
||||
Trip Date: {range}
|
||||
Traveling from: {origin}
|
||||
Traveler Interests: {interests}
|
||||
"""),
|
||||
agent=agent)
|
||||
|
||||
def __tip_section(self):
|
||||
return "If you do your BEST WORK, I'll tip you $100!"
|
@ -1,4 +1,4 @@
|
||||
from .utils import Standalone, Update, Setup, Alias
|
||||
from .utils import Standalone, Update, Setup, Alias, AgentSetup
|
||||
import argparse
|
||||
import sys
|
||||
import time
|
||||
@ -16,6 +16,12 @@ def main():
|
||||
parser.add_argument(
|
||||
"--copy", "-C", help="Copy the response to the clipboard", action="store_true"
|
||||
)
|
||||
subparsers = parser.add_subparsers(dest='command', help='Sub-command help')
|
||||
agents_parser = subparsers.add_parser('agents', help='Crew command help')
|
||||
agents_parser.add_argument(
|
||||
"trip_planner", help="The origin city for the trip")
|
||||
agents_parser.add_argument(
|
||||
'ApiKeys', help="enter API keys for tools", action="store_true")
|
||||
parser.add_argument(
|
||||
"--output",
|
||||
"-o",
|
||||
@ -67,6 +73,20 @@ def main():
|
||||
Update()
|
||||
Alias()
|
||||
sys.exit()
|
||||
if args.command == "agents":
|
||||
from .agents.trip_planner.main import planner_cli
|
||||
if args.ApiKeys:
|
||||
AgentSetup().apiKeys()
|
||||
sys.exit()
|
||||
if not args.trip_planner:
|
||||
print("Please provide an agent")
|
||||
print(f"Available Agents:")
|
||||
for agent in tripcrew.agents:
|
||||
print(agent)
|
||||
else:
|
||||
tripcrew = planner_cli()
|
||||
tripcrew.ask()
|
||||
sys.exit()
|
||||
if args.update:
|
||||
Update()
|
||||
Alias()
|
||||
|
@ -400,3 +400,32 @@ class Transcribe:
|
||||
except Exception as e:
|
||||
print("Error:", e)
|
||||
return None
|
||||
|
||||
|
||||
class AgentSetup:
|
||||
def apiKeys(self):
|
||||
"""Method to set the API keys in the environment file.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
|
||||
print("Welcome to Fabric. Let's get started.")
|
||||
browserless = input("Please enter your Browserless API key\n")
|
||||
serper = input("Please enter your Serper API key\n")
|
||||
|
||||
# Entries to be added
|
||||
browserless_entry = f"BROWSERLESS_API_KEY={browserless}"
|
||||
serper_entry = f"SERPER_API_KEY={serper}"
|
||||
|
||||
# Check and write to the file
|
||||
with open(env_file, "r+") as f:
|
||||
content = f.read()
|
||||
|
||||
# Determine if the file ends with a newline
|
||||
if content.endswith('\n'):
|
||||
# If it ends with a newline, we directly write the new entries
|
||||
f.write(f"{browserless_entry}\n{serper_entry}\n")
|
||||
else:
|
||||
# If it does not end with a newline, add one before the new entries
|
||||
f.write(f"\n{browserless_entry}\n{serper_entry}\n")
|
||||
|
1831
poetry.lock
generated
1831
poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@ -13,6 +13,11 @@ packages = [
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = "^3.10"
|
||||
crewai = "^0.11.0"
|
||||
unstructured = "0.10.25"
|
||||
pyowm = "3.3.0"
|
||||
tools = "^0.1.9"
|
||||
langchain-community = "^0.0.24"
|
||||
|
||||
[tool.poetry.group.cli.dependencies]
|
||||
pyyaml = "^6.0.1"
|
||||
@ -33,7 +38,6 @@ gevent = "^23.9.1"
|
||||
httpx = "^0.26.0"
|
||||
tqdm = "^4.66.1"
|
||||
|
||||
|
||||
[tool.poetry.group.server.dependencies]
|
||||
requests = "^2.31.0"
|
||||
openai = "^1.12.0"
|
||||
|
Loading…
Reference in New Issue
Block a user