mirror of
https://github.com/danielmiessler/fabric
synced 2024-11-10 07:10:31 +00:00
updated agents
This commit is contained in:
parent
54406181b4
commit
295d8d53f6
@ -1 +0,0 @@
|
||||
3.10
|
@ -1,81 +0,0 @@
|
||||
from langchain_community.tools import DuckDuckGoSearchRun
|
||||
import os
|
||||
from crewai import Agent, Task, Crew, Process
|
||||
from dotenv import load_dotenv
|
||||
import os
|
||||
|
||||
current_directory = os.path.dirname(os.path.realpath(__file__))
|
||||
config_directory = os.path.expanduser("~/.config/fabric")
|
||||
env_file = os.path.join(config_directory, ".env")
|
||||
load_dotenv(env_file)
|
||||
os.environ['OPENAI_MODEL_NAME'] = 'gpt-4-0125-preview'
|
||||
|
||||
# You can choose to use a local model through Ollama for example. See https://docs.crewai.com/how-to/LLM-Connections/ for more information.
|
||||
# osOPENAI_API_BASE='http://localhost:11434/v1'
|
||||
# OPENAI_MODEL_NAME='openhermes' # Adjust based on available model
|
||||
# OPENAI_API_KEY=''
|
||||
|
||||
# Install duckduckgo-search for this example:
|
||||
# !pip install -U duckduckgo-search
|
||||
|
||||
search_tool = DuckDuckGoSearchRun()
|
||||
|
||||
# Define your agents with roles and goals
|
||||
researcher = Agent(
|
||||
role='Senior Research Analyst',
|
||||
goal='Uncover cutting-edge developments in AI and data science',
|
||||
backstory="""You work at a leading tech think tank.
|
||||
Your expertise lies in identifying emerging trends.
|
||||
You have a knack for dissecting complex data and presenting actionable insights.""",
|
||||
verbose=True,
|
||||
allow_delegation=False,
|
||||
tools=[search_tool]
|
||||
# You can pass an optional llm attribute specifying what mode you wanna use.
|
||||
# It can be a local model through Ollama / LM Studio or a remote
|
||||
# model like OpenAI, Mistral, Antrophic or others (https://docs.crewai.com/how-to/LLM-Connections/)
|
||||
#
|
||||
# import os
|
||||
#
|
||||
# OR
|
||||
#
|
||||
# from langchain_openai import ChatOpenAI
|
||||
# llm=ChatOpenAI(model_name="gpt-3.5", temperature=0.7)
|
||||
)
|
||||
writer = Agent(
|
||||
role='Tech Content Strategist',
|
||||
goal='Craft compelling content on tech advancements',
|
||||
backstory="""You are a renowned Content Strategist, known for your insightful and engaging articles.
|
||||
You transform complex concepts into compelling narratives.""",
|
||||
verbose=True,
|
||||
allow_delegation=True
|
||||
)
|
||||
|
||||
# Create tasks for your agents
|
||||
task1 = Task(
|
||||
description="""Conduct a comprehensive analysis of the latest advancements in AI in 2024.
|
||||
Identify key trends, breakthrough technologies, and potential industry impacts.""",
|
||||
expected_output="Full analysis report in bullet points",
|
||||
agent=researcher
|
||||
)
|
||||
|
||||
task2 = Task(
|
||||
description="""Using the insights provided, develop an engaging blog
|
||||
post that highlights the most significant AI advancements.
|
||||
Your post should be informative yet accessible, catering to a tech-savvy audience.
|
||||
Make it sound cool, avoid complex words so it doesn't sound like AI.""",
|
||||
expected_output="Full blog post of at least 4 paragraphs",
|
||||
agent=writer
|
||||
)
|
||||
|
||||
# Instantiate your crew with a sequential process
|
||||
crew = Crew(
|
||||
agents=[researcher, writer],
|
||||
tasks=[task1, task2],
|
||||
verbose=2, # You can set it to 1 or 2 to different logging levels
|
||||
)
|
||||
|
||||
# Get your crew to work!
|
||||
result = crew.kickoff()
|
||||
|
||||
print("######################")
|
||||
print(result)
|
@ -1,4 +1,5 @@
|
||||
from .utils import Standalone, Update, Setup, Alias, AgentSetup
|
||||
from .agents.trip_planner.main import planner_cli
|
||||
import argparse
|
||||
import sys
|
||||
import time
|
||||
@ -16,12 +17,11 @@ def main():
|
||||
parser.add_argument(
|
||||
"--copy", "-C", help="Copy the response to the clipboard", action="store_true"
|
||||
)
|
||||
subparsers = parser.add_subparsers(dest='command', help='Sub-command help')
|
||||
agents_parser = subparsers.add_parser('agents', help='Crew command help')
|
||||
agents_parser.add_argument(
|
||||
"trip_planner", help="The origin city for the trip")
|
||||
agents_parser.add_argument(
|
||||
'ApiKeys', help="enter API keys for tools", action="store_true")
|
||||
parser.add_argument(
|
||||
'--agents', '-a', choices=['trip_planner', 'ApiKeys'],
|
||||
help="Use an AI agent to help you with a task. Acceptable values are 'trip_planner' or 'ApiKeys'. This option cannot be used with any other flag."
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--output",
|
||||
"-o",
|
||||
@ -73,19 +73,13 @@ def main():
|
||||
Update()
|
||||
Alias()
|
||||
sys.exit()
|
||||
if args.command == "agents":
|
||||
from .agents.trip_planner.main import planner_cli
|
||||
if not args.trip_planner:
|
||||
print("Please provide an agent")
|
||||
print(f"Available Agents:")
|
||||
for agent in tripcrew.agents:
|
||||
print(agent)
|
||||
sys.exit
|
||||
elif args.trip_planner:
|
||||
if args.agents:
|
||||
# Handle the agents logic
|
||||
if args.agents == 'trip_planner':
|
||||
tripcrew = planner_cli()
|
||||
tripcrew.ask()
|
||||
sys.exit()
|
||||
if args.ApiKeys:
|
||||
elif args.agents == 'ApiKeys':
|
||||
AgentSetup().run()
|
||||
sys.exit()
|
||||
if args.update:
|
||||
|
Loading…
Reference in New Issue
Block a user