[![Blog](https://img.shields.io/static/v1.svg?color=94398d&labelColor=555555&logoColor=ffffff&style=for-the-badge&label=linuxserver.io&message=Blog)](https://blog.linuxserver.io "all the things you can do with our containers including How-To guides, opinions and much more!")
[![Discord](https://img.shields.io/discord/354974912613449730.svg?color=94398d&labelColor=555555&logoColor=ffffff&style=for-the-badge&label=Discord&logo=discord)](https://discord.gg/YWrKVTn "realtime support / chat with the community and the team.")
[![Discourse](https://img.shields.io/discourse/https/discourse.linuxserver.io/topics.svg?color=94398d&labelColor=555555&logoColor=ffffff&style=for-the-badge&logo=discourse)](https://discourse.linuxserver.io "post on our community forum.")
[![Fleet](https://img.shields.io/static/v1.svg?color=94398d&labelColor=555555&logoColor=ffffff&style=for-the-badge&label=linuxserver.io&message=Fleet)](https://fleet.linuxserver.io "an online web interface which displays all of our maintained images.")
[![GitHub](https://img.shields.io/static/v1.svg?color=94398d&labelColor=555555&logoColor=ffffff&style=for-the-badge&label=linuxserver.io&message=GitHub&logo=github)](https://github.com/linuxserver "view the source for all of our repositories.")
[![Open Collective](https://img.shields.io/opencollective/all/linuxserver.svg?color=94398d&labelColor=555555&logoColor=ffffff&style=for-the-badge&label=Supporters&logo=open%20collective)](https://opencollective.com/linuxserver "please consider helping us by either donating or contributing to our budget")
[![MicroBadger Layers](https://img.shields.io/microbadger/layers/linuxserver/wireguard.svg?color=94398d&labelColor=555555&logoColor=ffffff&style=for-the-badge)](https://microbadger.com/images/linuxserver/wireguard "Get your own version badge on microbadger.com")
[WireGuard®](https://www.wireguard.com/) is an extremely simple yet fast and modern VPN that utilizes state-of-the-art cryptography. It aims to be faster, simpler, leaner, and more useful than IPsec, while avoiding the massive headache. It intends to be considerably more performant than OpenVPN. WireGuard is designed as a general purpose VPN for running on embedded interfaces and super computers alike, fit for many different circumstances. Initially released for the Linux kernel, it is now cross-platform (Windows, macOS, BSD, iOS, Android) and widely deployable. It is currently under heavy development, but already it might be regarded as the most secure, easiest to use, and simplest VPN solution in the industry.
Our images support multiple architectures such as `x86-64`, `arm64` and `armhf`. We utilise the docker manifest for multi-platform awareness. More information is available from docker [here](https://github.com/docker/distribution/blob/master/docs/spec/manifest-v2-2.md#manifest-list) and our announcement [here](https://blog.linuxserver.io/2019/02/21/the-lsio-pipeline-project/).
Simply pulling `linuxserver/wireguard` should retrieve the correct image for your arch, but you can also pull specific arch images via tags.
Container images are configured using parameters passed at runtime (such as those above). These parameters are separated by a colon and indicate `<external>:<internal>` respectively. For example, `-p 8080:80` would expose port `80` from inside the container to be accessible from the host's IP on port `8080` outside the container.
| Parameter | Function |
| :----: | --- |
| `-p 51820/udp` | wireguard port |
| `-e PUID=1000` | for UserID - see below for explanation |
| `-e PGID=1000` | for GroupID - see below for explanation |
| `-e TZ=Europe/London` | Specify a timezone to use EG Europe/London |
| `-e SERVERURL=wireguard.domain.com` | External IP or domain name for docker host. Used in server mode. If set to `auto`, the container will try to determine and set the external IP automatically |
| `-e SERVERPORT=51820` | External port for docker host. Used in server mode. |
| `-e PEERDNS=auto` | DNS server set in peer/client configs (can be set as `8.8.8.8`). Used in server mode. Defaults to `auto`, which uses wireguard docker host's DNS via included CoreDNS forward. |
For all of our images we provide the ability to override the default umask settings for services started within the containers using the optional `-e UMASK=022` setting.
Keep in mind umask is not chmod it subtracts from permissions based on it's value it does not add. Please read up [here](https://en.wikipedia.org/wiki/Umask) before asking for support.
When using volumes (`-v` flags) permissions issues can arise between the host OS and the container, we avoid this issue by allowing you to specify the user `PUID` and group `PGID`.
Ensure any volume directories on the host are owned by the same user you specify and any permissions issues will vanish like magic.
In this instance `PUID=1000` and `PGID=1000`, to find yours use `id user` as below:
This image is designed for Ubuntu and Debian based systems mainly. During container start, it will first check if the wireguard module is already installed and loaded. If not, it will then check if the kernel headers are already installed (in `/usr/src`) and if not, attempt to download the necessary kernel headers from the ubuntu/debian/raspbian repos; then will compile and install the kernel module.
If you're on a debian/ubuntu based host with a custom or downstream distro provided kernel (ie. Pop!_OS), the container won't be able to install the kernel headers from the regular ubuntu and debian repos. In those cases, you can try installing the headers on the host via `sudo apt install linux-headers-$(uname -r)` (if distro version) and then add a volume mapping for `/usr/src:/usr/src`, or if custom built, map the location of the existing headers to allow the container to use host installed headers to build the kernel module (tested successful on Pop!_OS, ymmv).
With regards to arm32/64 devices, Raspberry Pi 2-4 running the [official ubuntu images prior to focal](https://ubuntu.com/download/raspberry-pi) or Raspbian Buster are supported out of the box. For all other devices and OSes, you can try installing the kernel headers on the host, and mapping `/usr/src:/usr/src` and it may just work (no guarantees).
If the environment variable `PEERS` is set to a number, the container will run in server mode and the necessary server and peer/client confs will be generated. The peer/client config qr codes will be output in the docker log. They will also be saved in text and png format under `/config/peerX`.
Variables `SERVERURL`, `SERVERPORT`, `INTERNAL_SUBNET` and `PEERDNS` are optional variables used for server mode. Any changes to these environment variables will trigger regeneration of server and peer confs. Peer/client confs will be recreated with existing private/public keys. Delete the peer folders for the keys to be recreated along with the confs.
To display the QR codes of active peers again, you can use the following command and list the peer numbers as arguments: `docker exec -it wireguard /app/show-peer 1 4 5` (Keep in mind that the QR codes are also stored as PNGs in the config folder).
The templates used for server and peer confs are saved under `/config/templates`. Advanced users can modify these templates and force conf generation by deleting `/config/wg0.conf` and restarting the container.
If you plan to use Wireguard both remotely and locally, say on your mobile phone, you will need to consider routing. Most firewalls will not route ports forwarded on your WAN interface correctly to the LAN out of the box. This means that when you return home, even though you can see the Wireguard server, the return packets will probably get lost.
This is not a Wireguard specific issue and the two generally accepted solutions are NAT reflection (setting your edge router/firewall up in such a way as it translates internal packets correctly) or split horizon DNS (setting your internal DNS to return the private rather than public IP when connecting locally).
Both of these approaches have positives and negatives however their setup is out of scope for this document as everyone's network layout and equipment will be different.
[![Docker Mods](https://img.shields.io/badge/dynamic/yaml?color=94398d&labelColor=555555&logoColor=ffffff&style=for-the-badge&label=mods&query=%24.mods%5B%27wireguard%27%5D.mod_count&url=https%3A%2F%2Fraw.githubusercontent.com%2Flinuxserver%2Fdocker-mods%2Fmaster%2Fmod-list.yml)](https://mods.linuxserver.io/?mod=wireguard "view available mods for this container.")
We publish various [Docker Mods](https://github.com/linuxserver/docker-mods) to enable additional functionality within the containers. The list of Mods available for this image (if any) can be accessed via the dynamic badge above.
* Shell access whilst the container is running: `docker exec -it wireguard /bin/bash`
* To monitor the logs of the container in realtime: `docker logs -f wireguard`
* container version number
*`docker inspect -f '{{ index .Config.Labels "build_version" }}' wireguard`
* image version number
*`docker inspect -f '{{ index .Config.Labels "build_version" }}' linuxserver/wireguard`
## Updating Info
Most of our images are static, versioned, and require an image update and container recreation to update the app inside. With some exceptions (ie. nextcloud, plex), we do not recommend or support updating apps inside the container. Please consult the [Application Setup](#application-setup) section above to see if it is recommended for the image.
Below are the instructions for updating containers:
### Via Docker Run/Create
* Update the image: `docker pull linuxserver/wireguard`
* Stop the running container: `docker stop wireguard`
* Delete the container: `docker rm wireguard`
* Recreate a new container with the same docker create parameters as instructed above (if mapped correctly to a host folder, your `/config` folder and settings will be preserved)
* Start the new container: `docker start wireguard`
* You can also remove the old dangling images: `docker image prune`
### Via Docker Compose
* Update all images: `docker-compose pull`
* or update a single image: `docker-compose pull wireguard`
* Let compose update all containers as necessary: `docker-compose up -d`
* or update a single container: `docker-compose up -d wireguard`
* You can also remove the old dangling images: `docker image prune`
### Via Watchtower auto-updater (especially useful if you don't remember the original parameters)
* Pull the latest image at its tag and replace it with the same env variables in one run:
```
docker run --rm \
-v /var/run/docker.sock:/var/run/docker.sock \
containrrr/watchtower \
--run-once wireguard
```
**Note:** We do not endorse the use of Watchtower as a solution to automated updates of existing Docker containers. In fact we generally discourage automated updates. However, this is a useful tool for one-time manual updates of containers where you have forgotten the original parameters. In the long term, we highly recommend using Docker Compose.
* You can also remove the old dangling images: `docker image prune`
## Building locally
If you want to make local modifications to these images for development purposes or just to customize the logic:
* **19.06.20:** - Compile wireguard tools and kernel module instead of using the ubuntu packages. Make module install optional. Imrpove verbosity in logs.
* **08.04.20:** - Add arm32/64 builds and enable multi-arch (rpi4 with ubuntu and raspbian buster tested). Add CoreDNS for `PEERDNS=auto` setting. Update the `add-peer`/`show-peer` scripts to utilize the templates and the `INTERNAL_SUBNET` var (previously missed, oops).