/** * unrar.js * * Licensed under the MIT License * * Copyright(c) 2011 Google Inc. * Copyright(c) 2011 antimatter15 */ // TODO: Rewrite the RarLocalHeader parsing to use a ByteStream instead // of a BitStream so that it throws properly when not enough bytes are // present. // This file expects to be invoked as a Worker (see onmessage below). importScripts('../io/bitstream.js'); importScripts('../io/bytestream.js'); importScripts('../io/bytebuffer.js'); importScripts('archive.js'); importScripts('rarvm.js'); const UnarchiveState = { NOT_STARTED: 0, UNARCHIVING: 1, WAITING: 2, FINISHED: 3, }; // State - consider putting these into a class. let unarchiveState = UnarchiveState.NOT_STARTED; let bytestream = null; let allLocalFiles = null; let logToConsole = false; // Progress variables. let currentFilename = ''; let currentFileNumber = 0; let currentBytesUnarchivedInFile = 0; let currentBytesUnarchived = 0; let totalUncompressedBytesInArchive = 0; let totalFilesInArchive = 0; // Helper functions. const info = function(str) { postMessage(new bitjs.archive.UnarchiveInfoEvent(str)); }; const err = function(str) { postMessage(new bitjs.archive.UnarchiveErrorEvent(str)); }; const postProgress = function() { postMessage(new bitjs.archive.UnarchiveProgressEvent( currentFilename, currentFileNumber, currentBytesUnarchivedInFile, currentBytesUnarchived, totalUncompressedBytesInArchive, totalFilesInArchive, parseInt(bytestream.getNumBytesRead(), 10), )); }; // shows a byte value as its hex representation const nibble = '0123456789ABCDEF'; const byteValueToHexString = function(num) { return nibble[num>>4] + nibble[num&0xF]; }; const twoByteValueToHexString = function(num) { return nibble[(num>>12)&0xF] + nibble[(num>>8)&0xF] + nibble[(num>>4)&0xF] + nibble[num&0xF]; }; // Volume Types const MARK_HEAD = 0x72; const MAIN_HEAD = 0x73; const FILE_HEAD = 0x74; const COMM_HEAD = 0x75; const AV_HEAD = 0x76; const SUB_HEAD = 0x77; const PROTECT_HEAD = 0x78; const SIGN_HEAD = 0x79; const NEWSUB_HEAD = 0x7a; const ENDARC_HEAD = 0x7b; // ============================================================================================== // /** */ class RarVolumeHeader { /** * @param {bitjs.io.ByteStream} bstream */ constructor(bstream) { let headBytesRead = 0; // byte 1,2 this.crc = bstream.readNumber(2); // byte 3 this.headType = bstream.readNumber(1); // Get flags // bytes 4,5 this.flags = {}; this.flags.value = bstream.readNumber(2); const flagsValue = this.flags.value; switch (this.headType) { case MAIN_HEAD: this.flags.MHD_VOLUME = !!(flagsValue & 0x01); this.flags.MHD_COMMENT = !!(flagsValue & 0x02); this.flags.MHD_LOCK = !!(flagsValue & 0x04); this.flags.MHD_SOLID = !!(flagsValue & 0x08); this.flags.MHD_PACK_COMMENT = !!(flagsValue & 0x10); this.flags.MHD_NEWNUMBERING = this.flags.MHD_PACK_COMMENT; this.flags.MHD_AV = !!(flagsValue & 0x20); this.flags.MHD_PROTECT = !!(flagsValue & 0x40); this.flags.MHD_PASSWORD = !!(flagsValue & 0x80); this.flags.MHD_FIRSTVOLUME = !!(flagsValue & 0x100); this.flags.MHD_ENCRYPTVER = !!(flagsValue & 0x200); //bstream.readBits(6); // unused break; case FILE_HEAD: this.flags.LHD_SPLIT_BEFORE = !!(flagsValue & 0x01); this.flags.LHD_SPLIT_AFTER = !!(flagsValue & 0x02); this.flags.LHD_PASSWORD = !!(flagsValue & 0x04); this.flags.LHD_COMMENT = !!(flagsValue & 0x08); this.flags.LHD_SOLID = !!(flagsValue & 0x10); // 3 bits unused this.flags.LHD_LARGE = !!(flagsValue & 0x100); this.flags.LHD_UNICODE = !!(flagsValue & 0x200); this.flags.LHD_SALT = !!(flagsValue & 0x400); this.flags.LHD_VERSION = !!(flagsValue & 0x800); this.flags.LHD_EXTTIME = !!(flagsValue & 0x1000); this.flags.LHD_EXTFLAGS = !!(flagsValue & 0x2000); // 2 bits unused //info(' LHD_SPLIT_BEFORE = ' + this.flags.LHD_SPLIT_BEFORE); break; default: break; } // byte 6,7 this.headSize = bstream.readNumber(2); headBytesRead += 7; switch (this.headType) { case MAIN_HEAD: this.highPosAv = bstream.readNumber(2); this.posAv = bstream.readNumber(4); headBytesRead += 6; if (this.flags.MHD_ENCRYPTVER) { this.encryptVer = bstream.readNumber(1); headBytesRead += 1; } //info('Found MAIN_HEAD with highPosAv=' + this.highPosAv + ', posAv=' + this.posAv); break; case FILE_HEAD: this.packSize = bstream.readNumber(4); this.unpackedSize = bstream.readNumber(4); this.hostOS = bstream.readNumber(1); this.fileCRC = bstream.readNumber(4); this.fileTime = bstream.readNumber(4); this.unpVer = bstream.readNumber(1); this.method = bstream.readNumber(1); this.nameSize = bstream.readNumber(2); this.fileAttr = bstream.readNumber(4); headBytesRead += 25; if (this.flags.LHD_LARGE) { //info('Warning: Reading in LHD_LARGE 64-bit size values'); this.HighPackSize = bstream.readNumber(4); this.HighUnpSize = bstream.readNumber(4); headBytesRead += 8; } else { this.HighPackSize = 0; this.HighUnpSize = 0; if (this.unpackedSize == 0xffffffff) { this.HighUnpSize = 0x7fffffff this.unpackedSize = 0xffffffff; } } this.fullPackSize = 0; this.fullUnpackSize = 0; this.fullPackSize |= this.HighPackSize; this.fullPackSize <<= 32; this.fullPackSize |= this.packSize; // read in filename // TODO: Use readString? this.filename = bstream.readBytes(this.nameSize); headBytesRead += this.nameSize; let _s = ''; for (let _i = 0; _i < this.filename.length; _i++) { _s += String.fromCharCode(this.filename[_i]); } this.filename = _s; if (this.flags.LHD_SALT) { //info('Warning: Reading in 64-bit salt value'); this.salt = bstream.readBytes(8); // 8 bytes headBytesRead += 8; } if (this.flags.LHD_EXTTIME) { // 16-bit flags const extTimeFlags = bstream.readNumber(2); headBytesRead += 2; // this is adapted straight out of arcread.cpp, Archive::ReadHeader() for (let I = 0; I < 4; ++I) { const rmode = extTimeFlags >> ((3 - I) * 4); if ((rmode & 8) == 0) { continue; } if (I != 0) { bstream.readBytes(2); headBytesRead += 2; } const count = (rmode & 3); for (let J = 0; J < count; ++J) { bstream.readNumber(1); headBytesRead += 1; } } } if (this.flags.LHD_COMMENT) { //info('Found a LHD_COMMENT'); } if (headBytesRead < this.headSize) { bstream.readBytes(this.headSize - headBytesRead); } break; case ENDARC_HEAD: break; default: if (logToConsole) { info('Found a header of type 0x' + byteValueToHexString(this.headType)); } // skip the rest of the header bytes (for now) bstream.readBytes(this.headSize - 7); break; } } dump() { info(' crc=' + this.crc); info(' headType=' + this.headType); info(' flags=' + twoByteValueToHexString(this.flags.value)); info(' headSize=' + this.headSize); if (this.headType == FILE_HEAD) { info('Found FILE_HEAD with packSize=' + this.packSize + ', unpackedSize= ' + this.unpackedSize + ', hostOS=' + this.hostOS + ', unpVer=' + this.unpVer + ', method=' + this.method + ', filename=' + this.filename); } } } const BLOCK_LZ = 0; const BLOCK_PPM = 1; const rLDecode = [0,1,2,3,4,5,6,7,8,10,12,14,16,20,24,28,32,40,48,56,64,80,96,112,128,160,192,224]; const rLBits = [0,0,0,0,0,0,0,0,1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5]; const rDBitLengthCounts = [4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,14,0,12]; const rSDDecode = [0,4,8,16,32,64,128,192]; const rSDBits = [2,2,3, 4, 5, 6, 6, 6]; const rDDecode = [0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 327680, 393216, 458752, 524288, 589824, 655360, 720896, 786432, 851968, 917504, 983040]; const rDBits = [0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16]; const rLOW_DIST_REP_COUNT = 16; const rNC = 299; const rDC = 60; const rLDC = 17; const rRC = 28; const rBC = 20; const rHUFF_TABLE_SIZE = (rNC+rDC+rRC+rLDC); const UnpOldTable = new Array(rHUFF_TABLE_SIZE); const BD = { //bitdecode DecodeLen: new Array(16), DecodePos: new Array(16), DecodeNum: new Array(rBC) }; const LD = { //litdecode DecodeLen: new Array(16), DecodePos: new Array(16), DecodeNum: new Array(rNC) }; const DD = { //distdecode DecodeLen: new Array(16), DecodePos: new Array(16), DecodeNum: new Array(rDC) }; const LDD = { //low dist decode DecodeLen: new Array(16), DecodePos: new Array(16), DecodeNum: new Array(rLDC) }; const RD = { //rep decode DecodeLen: new Array(16), DecodePos: new Array(16), DecodeNum: new Array(rRC) }; /** * @type {Array} */ const rOldBuffers = []; /** * The current buffer we are unpacking to. * @type {bitjs.io.ByteBuffer} */ let rBuffer; /** * The buffer of the final bytes after filtering (only used in Unpack29). * @type {bitjs.io.ByteBuffer} */ let wBuffer; /** * In unpack.cpp, UnpPtr keeps track of what bytes have been unpacked * into the Window buffer and WrPtr keeps track of what bytes have been * actually written to disk after the unpacking and optional filtering * has been done. * * In our case, rBuffer is the buffer for the unpacked bytes and wBuffer is * the final output bytes. */ /** * Read in Huffman tables for RAR * @param {bitjs.io.BitStream} bstream */ function RarReadTables(bstream) { const BitLength = new Array(rBC); const Table = new Array(rHUFF_TABLE_SIZE); // before we start anything we need to get byte-aligned bstream.readBits( (8 - bstream.bitPtr) & 0x7 ); if (bstream.readBits(1)) { info('Error! PPM not implemented yet'); return; } if (!bstream.readBits(1)) { //discard old table for (let i = UnpOldTable.length; i--;) { UnpOldTable[i] = 0; } } // read in bit lengths for (let I = 0; I < rBC; ++I) { const Length = bstream.readBits(4); if (Length == 15) { let ZeroCount = bstream.readBits(4); if (ZeroCount == 0) { BitLength[I] = 15; } else { ZeroCount += 2; while (ZeroCount-- > 0 && I < rBC) { BitLength[I++] = 0; } --I; } } else { BitLength[I] = Length; } } // now all 20 bit lengths are obtained, we construct the Huffman Table: RarMakeDecodeTables(BitLength, 0, BD, rBC); const TableSize = rHUFF_TABLE_SIZE; for (let i = 0; i < TableSize;) { const num = RarDecodeNumber(bstream, BD); if (num < 16) { Table[i] = (num + UnpOldTable[i]) & 0xf; i++; } else if (num < 18) { let N = (num == 16) ? (bstream.readBits(3) + 3) : (bstream.readBits(7) + 11); while (N-- > 0 && i < TableSize) { Table[i] = Table[i - 1]; i++; } } else { let N = (num == 18) ? (bstream.readBits(3) + 3) : (bstream.readBits(7) + 11); while (N-- > 0 && i < TableSize) { Table[i++] = 0; } } } RarMakeDecodeTables(Table, 0, LD, rNC); RarMakeDecodeTables(Table, rNC, DD, rDC); RarMakeDecodeTables(Table, rNC + rDC, LDD, rLDC); RarMakeDecodeTables(Table, rNC + rDC + rLDC, RD, rRC); for (let i = UnpOldTable.length; i--;) { UnpOldTable[i] = Table[i]; } return true; } function RarDecodeNumber(bstream, dec) { const DecodeLen = dec.DecodeLen; const DecodePos = dec.DecodePos; const DecodeNum = dec.DecodeNum; const bitField = bstream.getBits() & 0xfffe; //some sort of rolled out binary search const bits = ((bitField < DecodeLen[8])? ((bitField < DecodeLen[4])? ((bitField < DecodeLen[2])? ((bitField < DecodeLen[1])?1:2) :((bitField < DecodeLen[3])?3:4)) :(bitField < DecodeLen[6])? ((bitField < DecodeLen[5])?5:6) :((bitField < DecodeLen[7])?7:8)) :((bitField < DecodeLen[12])? ((bitField < DecodeLen[10])? ((bitField < DecodeLen[9])?9:10) :((bitField < DecodeLen[11])?11:12)) :(bitField < DecodeLen[14])? ((bitField < DecodeLen[13])?13:14) :15)); bstream.readBits(bits); const N = DecodePos[bits] + ((bitField - DecodeLen[bits -1]) >>> (16 - bits)); return DecodeNum[N]; } function RarMakeDecodeTables(BitLength, offset, dec, size) { const DecodeLen = dec.DecodeLen; const DecodePos = dec.DecodePos; const DecodeNum = dec.DecodeNum; const LenCount = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; const TmpPos = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; let N = 0; let M = 0; for (let i = DecodeNum.length; i--;) { DecodeNum[i] = 0; } for (let i = 0; i < size; i++) { LenCount[BitLength[i + offset] & 0xF]++; } LenCount[0] = 0; TmpPos[0] = 0; DecodePos[0] = 0; DecodeLen[0] = 0; for (let I = 1; I < 16; ++I) { N = 2 * (N+LenCount[I]); M = (N << (15-I)); if (M > 0xFFFF) { M = 0xFFFF; } DecodeLen[I] = M; DecodePos[I] = DecodePos[I-1] + LenCount[I-1]; TmpPos[I] = DecodePos[I]; } for (let I = 0; I < size; ++I) { if (BitLength[I + offset] != 0) { DecodeNum[ TmpPos[ BitLength[offset + I] & 0xF ]++] = I; } } } // TODO: implement /** * @param {bitjs.io.BitStream} bstream * @param {boolean} Solid */ function Unpack15(bstream, Solid) { info('ERROR! RAR 1.5 compression not supported'); } /** * Unpacks the bit stream into rBuffer using the Unpack20 algorithm. * @param {bitjs.io.BitStream} bstream * @param {boolean} Solid */ function Unpack20(bstream, Solid) { const destUnpSize = rBuffer.data.length; let oldDistPtr = 0; if (!Solid) { RarReadTables20(bstream); } while (destUnpSize > rBuffer.ptr) { let num = RarDecodeNumber(bstream, LD); if (num < 256) { rBuffer.insertByte(num); continue; } if (num > 269) { let Length = rLDecode[num -= 270] + 3; if ((Bits = rLBits[num]) > 0) { Length += bstream.readBits(Bits); } let DistNumber = RarDecodeNumber(bstream, DD); let Distance = rDDecode[DistNumber] + 1; if ((Bits = rDBits[DistNumber]) > 0) { Distance += bstream.readBits(Bits); } if (Distance >= 0x2000) { Length++; if (Distance >= 0x40000) { Length++; } } lastLength = Length; lastDist = rOldDist[oldDistPtr++ & 3] = Distance; RarCopyString(Length, Distance); continue; } if (num == 269) { RarReadTables20(bstream); RarUpdateProgress(); continue; } if (num == 256) { lastDist = rOldDist[oldDistPtr++ & 3] = lastDist; RarCopyString(lastLength, lastDist); continue; } if (num < 261) { const Distance = rOldDist[(oldDistPtr - (num - 256)) & 3]; const LengthNumber = RarDecodeNumber(bstream, RD); let Length = rLDecode[LengthNumber] +2; if ((Bits = rLBits[LengthNumber]) > 0) { Length += bstream.readBits(Bits); } if (Distance >= 0x101) { Length++; if (Distance >= 0x2000) { Length++ if (Distance >= 0x40000) { Length++; } } } lastLength = Length; lastDist = rOldDist[oldDistPtr++ & 3] = Distance; RarCopyString(Length, Distance); continue; } if (num < 270) { let Distance = rSDDecode[num -= 261] + 1; if ((Bits = rSDBits[num]) > 0) { Distance += bstream.readBits(Bits); } lastLength = 2; lastDist = rOldDist[oldDistPtr++ & 3] = Distance; RarCopyString(2, Distance); continue; } } RarUpdateProgress(); } function RarUpdateProgress() { const change = rBuffer.ptr - currentBytesUnarchivedInFile; currentBytesUnarchivedInFile = rBuffer.ptr; currentBytesUnarchived += change; postProgress(); } const rNC20 = 298; const rDC20 = 48; const rRC20 = 28; const rBC20 = 19; const rMC20 = 257; const UnpOldTable20 = new Array(rMC20 * 4); // TODO: This function should return a boolean value, see unpack20.cpp. function RarReadTables20(bstream) { const BitLength = new Array(rBC20); const Table = new Array(rMC20 * 4); let TableSize; let N; let I; const AudioBlock = bstream.readBits(1); if (!bstream.readBits(1)) { for (let i = UnpOldTable20.length; i--;) { UnpOldTable20[i] = 0; } } TableSize = rNC20 + rDC20 + rRC20; for (I = 0; I < rBC20; I++) { BitLength[I] = bstream.readBits(4); } RarMakeDecodeTables(BitLength, 0, BD, rBC20); I = 0; while (I < TableSize) { const num = RarDecodeNumber(bstream, BD); if (num < 16) { Table[I] = num + UnpOldTable20[I] & 0xf; I++; } else if (num == 16) { N = bstream.readBits(2) + 3; while (N-- > 0 && I < TableSize) { Table[I] = Table[I - 1]; I++; } } else { if (num == 17) { N = bstream.readBits(3) + 3; } else { N = bstream.readBits(7) + 11; } while (N-- > 0 && I < TableSize) { Table[I++] = 0; } } } RarMakeDecodeTables(Table, 0, LD, rNC20); RarMakeDecodeTables(Table, rNC20, DD, rDC20); RarMakeDecodeTables(Table, rNC20 + rDC20, RD, rRC20); for (let i = UnpOldTable20.length; i--;) { UnpOldTable20[i] = Table[i]; } } let lowDistRepCount = 0; let prevLowDist = 0; let rOldDist = [0,0,0,0]; let lastDist; let lastLength; // ============================================================================================== // // Unpack code specific to RarVM const VM = new RarVM(); /** * Filters code, one entry per filter. * @type {Array} */ let Filters = []; /** * Filters stack, several entrances of same filter are possible. * @type {Array} */ let PrgStack = []; /** * Lengths of preceding blocks, one length per filter. Used to reduce * size required to write block length if lengths are repeating. * @type {Array} */ let OldFilterLengths = []; let LastFilter = 0; function InitFilters() { OldFilterLengths = []; LastFilter = 0; Filters = []; PrgStack = []; } /** * @param {number} firstByte The first byte (flags). * @param {Uint8Array} vmCode An array of bytes. */ function RarAddVMCode(firstByte, vmCode) { VM.init(); const bstream = new bitjs.io.BitStream(vmCode.buffer, true /* rtl */); let filtPos; if (firstByte & 0x80) { filtPos = RarVM.readData(bstream); if (filtPos == 0) { InitFilters(); } else { filtPos--; } } else { filtPos = LastFilter; } if (filtPos > Filters.length || filtPos > OldFilterLengths.length) { return false; } LastFilter = filtPos; const newFilter = (filtPos == Filters.length); // new filter for PrgStack const stackFilter = new UnpackFilter(); let filter = null; // new filter code, never used before since VM reset if (newFilter) { // too many different filters, corrupt archive if (filtPos > 1024) { return false; } filter = new UnpackFilter(); Filters.push(filter); stackFilter.ParentFilter = (Filters.length - 1); OldFilterLengths.push(0); // OldFilterLengths.Add(1) filter.ExecCount = 0; } else { // filter was used in the past filter = Filters[filtPos]; stackFilter.ParentFilter = filtPos; filter.ExecCount++; } let emptyCount = 0; for (let i = 0; i < PrgStack.length; ++i) { PrgStack[i - emptyCount] = PrgStack[i]; if (PrgStack[i] == null) { emptyCount++; } if (emptyCount > 0) { PrgStack[i] = null; } } if (emptyCount == 0) { PrgStack.push(null); //PrgStack.Add(1); emptyCount = 1; } const stackPos = PrgStack.length - emptyCount; PrgStack[stackPos] = stackFilter; stackFilter.ExecCount = filter.ExecCount; let blockStart = RarVM.readData(bstream); if (firstByte & 0x40) { blockStart += 258; } stackFilter.BlockStart = (blockStart + rBuffer.ptr) & MAXWINMASK; if (firstByte & 0x20) { stackFilter.BlockLength = RarVM.readData(bstream); } else { stackFilter.BlockLength = filtPos < OldFilterLengths.length ? OldFilterLengths[filtPos] : 0; } stackFilter.NextWindow = (wBuffer.ptr != rBuffer.ptr) && (((wBuffer.ptr - rBuffer.ptr) & MAXWINMASK) <= blockStart); OldFilterLengths[filtPos] = stackFilter.BlockLength; for (let i = 0; i < 7; ++i) { stackFilter.Prg.InitR[i] = 0; } stackFilter.Prg.InitR[3] = VM_GLOBALMEMADDR; stackFilter.Prg.InitR[4] = stackFilter.BlockLength; stackFilter.Prg.InitR[5] = stackFilter.ExecCount; // set registers to optional parameters if any if (firstByte & 0x10) { const initMask = bstream.readBits(7); for (let i = 0; i < 7; ++i) { if (initMask & (1 << i)) { stackFilter.Prg.InitR[i] = RarVM.readData(bstream); } } } if (newFilter) { const vmCodeSize = RarVM.readData(bstream); if (vmCodeSize >= 0x10000 || vmCodeSize == 0) { return false; } const vmCode = new Uint8Array(vmCodeSize); for (let i = 0; i < vmCodeSize; ++i) { //if (Inp.Overflow(3)) // return(false); vmCode[i] = bstream.readBits(8); } VM.prepare(vmCode, filter.Prg); } stackFilter.Prg.Cmd = filter.Prg.Cmd; stackFilter.Prg.AltCmd = filter.Prg.Cmd; const staticDataSize = filter.Prg.StaticData.length; if (staticDataSize > 0 && staticDataSize < VM_GLOBALMEMSIZE) { // read statically defined data contained in DB commands for (let i = 0; i < staticDataSize; ++i) { stackFilter.Prg.StaticData[i] = filter.Prg.StaticData[i]; } } if (stackFilter.Prg.GlobalData.length < VM_FIXEDGLOBALSIZE) { stackFilter.Prg.GlobalData = new Uint8Array(VM_FIXEDGLOBALSIZE); } const globalData = stackFilter.Prg.GlobalData; for (let i = 0; i < 7; ++i) { VM.setLowEndianValue(globalData, stackFilter.Prg.InitR[i], i * 4); } VM.setLowEndianValue(globalData, stackFilter.BlockLength, 0x1c); VM.setLowEndianValue(globalData, 0, 0x20); VM.setLowEndianValue(globalData, stackFilter.ExecCount, 0x2c); for (let i = 0; i < 16; ++i) { globalData[0x30 + i] = 0; } // put data block passed as parameter if any if (firstByte & 8) { //if (Inp.Overflow(3)) // return(false); const dataSize = RarVM.readData(bstream); if (dataSize > (VM_GLOBALMEMSIZE - VM_FIXEDGLOBALSIZE)) { return false; } const curSize = stackFilter.Prg.GlobalData.length; if (curSize < dataSize + VM_FIXEDGLOBALSIZE) { // Resize global data and update the stackFilter and local variable. const numBytesToAdd = dataSize + VM_FIXEDGLOBALSIZE - curSize; const newGlobalData = new Uint8Array(globalData.length + numBytesToAdd); newGlobalData.set(globalData); stackFilter.Prg.GlobalData = newGlobalData; globalData = newGlobalData; } //byte *GlobalData=&StackFilter->Prg.GlobalData[VM_FIXEDGLOBALSIZE]; for (let i = 0; i < dataSize; ++i) { //if (Inp.Overflow(3)) // return(false); globalData[VM_FIXEDGLOBALSIZE + i] = bstream.readBits(8); } } return true; } /** * @param {!bitjs.io.BitStream} bstream */ function RarReadVMCode(bstream) { const firstByte = bstream.readBits(8); let length = (firstByte & 7) + 1; if (length == 7) { length = bstream.readBits(8) + 7; } else if (length == 8) { length = bstream.readBits(16); } // Read all bytes of VM code into an array. const vmCode = new Uint8Array(length); for (let i = 0; i < length; i++) { // Do something here with checking readbuf. vmCode[i] = bstream.readBits(8); } return RarAddVMCode(firstByte, vmCode); } /** * Unpacks the bit stream into rBuffer using the Unpack29 algorithm. * @param {bitjs.io.BitStream} bstream * @param {boolean} Solid */ function Unpack29(bstream, Solid) { // lazy initialize rDDecode and rDBits const DDecode = new Array(rDC); const DBits = new Array(rDC); let Dist = 0; let BitLength = 0; let Slot = 0; for (let I = 0; I < rDBitLengthCounts.length; I++,BitLength++) { for (let J = 0; J < rDBitLengthCounts[I]; J++,Slot++,Dist+=(1<= 271) { let Length = rLDecode[num -= 271] + 3; if ((Bits = rLBits[num]) > 0) { Length += bstream.readBits(Bits); } const DistNumber = RarDecodeNumber(bstream, DD); let Distance = DDecode[DistNumber] + 1; if ((Bits = DBits[DistNumber]) > 0) { if (DistNumber > 9) { if (Bits > 4) { Distance += ((bstream.getBits() >>> (20 - Bits)) << 4); bstream.readBits(Bits - 4); //todo: check this } if (lowDistRepCount > 0) { lowDistRepCount--; Distance += prevLowDist; } else { const LowDist = RarDecodeNumber(bstream, LDD); if (LowDist == 16) { lowDistRepCount = rLOW_DIST_REP_COUNT - 1; Distance += prevLowDist; } else { Distance += LowDist; prevLowDist = LowDist; } } } else { Distance += bstream.readBits(Bits); } } if (Distance >= 0x2000) { Length++; if (Distance >= 0x40000) { Length++; } } RarInsertOldDist(Distance); RarInsertLastMatch(Length, Distance); RarCopyString(Length, Distance); continue; } if (num == 256) { if (!RarReadEndOfBlock(bstream)) { break; } continue; } if (num == 257) { if (!RarReadVMCode(bstream)) { break; } continue; } if (num == 258) { if (lastLength != 0) { RarCopyString(lastLength, lastDist); } continue; } if (num < 263) { const DistNum = num - 259; const Distance = rOldDist[DistNum]; for (let I = DistNum; I > 0; I--) { rOldDist[I] = rOldDist[I-1]; } rOldDist[0] = Distance; const LengthNumber = RarDecodeNumber(bstream, RD); let Length = rLDecode[LengthNumber] + 2; if ((Bits = rLBits[LengthNumber]) > 0) { Length += bstream.readBits(Bits); } RarInsertLastMatch(Length, Distance); RarCopyString(Length, Distance); continue; } if (num < 272) { let Distance = rSDDecode[num -= 263] + 1; if ((Bits = rSDBits[num]) > 0) { Distance += bstream.readBits(Bits); } RarInsertOldDist(Distance); RarInsertLastMatch(2, Distance); RarCopyString(2, Distance); continue; } } // while (true) RarUpdateProgress(); RarWriteBuf(); } /** * Does stuff to the current byte buffer (rBuffer) based on * the filters loaded into the RarVM and writes out to wBuffer. */ function RarWriteBuf() { let writeSize = (rBuffer.ptr & MAXWINMASK); for (let i = 0; i < PrgStack.length; ++i) { const flt = PrgStack[i]; if (flt == null) { continue; } if (flt.NextWindow) { flt.NextWindow = false; continue; } const blockStart = flt.BlockStart; const blockLength = flt.BlockLength; // WrittenBorder = wBuffer.ptr if (((blockStart - wBuffer.ptr) & MAXWINMASK) < writeSize) { if (wBuffer.ptr != blockStart) { // Copy blockStart bytes from rBuffer into wBuffer. RarWriteArea(wBuffer.ptr, blockStart); writeSize = (rBuffer.ptr - wBuffer.ptr) & MAXWINMASK; } if (blockLength <= writeSize) { const blockEnd = (blockStart + blockLength) & MAXWINMASK; if (blockStart < blockEnd || blockEnd == 0) { VM.setMemory(0, rBuffer.data.subarray(blockStart, blockStart + blockLength), blockLength); } else { const firstPartLength = MAXWINSIZE - blockStart; VM.setMemory(0, rBuffer.data.subarray(blockStart, blockStart + firstPartLength), firstPartLength); VM.setMemory(firstPartLength, rBuffer.data, blockEnd); } const parentPrg = Filters[flt.ParentFilter].Prg; const prg = flt.Prg; if (parentPrg.GlobalData.length > VM_FIXEDGLOBALSIZE) { // Copy global data from previous script execution if any. prg.GlobalData = new Uint8Array(parentPrg.GlobalData); } RarExecuteCode(prg); if (prg.GlobalData.length > VM_FIXEDGLOBALSIZE) { // Save global data for next script execution. const globalDataLen = prg.GlobalData.length; if (parentPrg.GlobalData.length < globalDataLen) { parentPrg.GlobalData = new Uint8Array(globalDataLen); } parentPrg.GlobalData.set( this.mem_.subarray(VM_FIXEDGLOBALSIZE, VM_FIXEDGLOBALSIZE + globalDataLen), VM_FIXEDGLOBALSIZE); } else { parentPrg.GlobalData = new Uint8Array(0); } let filteredData = prg.FilteredData; PrgStack[i] = null; while (i + 1 < PrgStack.length) { const nextFilter = PrgStack[i + 1]; if (nextFilter == null || nextFilter.BlockStart != blockStart || nextFilter.BlockLength != filteredData.length || nextFilter.NextWindow) { break; } // Apply several filters to same data block. VM.setMemory(0, filteredData, filteredData.length); const innerParentPrg = Filters[nextFilter.ParentFilter].Prg; const nextPrg = nextFilter.Prg; const globalDataLen = innerParentPrg.GlobalData.length; if (globalDataLen > VM_FIXEDGLOBALSIZE) { // Copy global data from previous script execution if any. nextPrg.GlobalData = new Uint8Array(globalDataLen); nextPrg.GlobalData.set(innerParentPrg.GlobalData.subarray(VM_FIXEDGLOBALSIZE, VM_FIXEDGLOBALSIZE + globalDataLen), VM_FIXEDGLOBALSIZE); } RarExecuteCode(nextPrg); if (nextPrg.GlobalData.length > VM_GLOBALMEMSIZE) { // Save global data for next script execution. const globalDataLen = nextPrg.GlobalData.length; if (innerParentPrg.GlobalData.length < globalDataLen) { innerParentPrg.GlobalData = new Uint8Array(globalDataLen); } innerParentPrg.GlobalData.set( this.mem_.subarray(VM_FIXEDGLOBALSIZE, VM_FIXEDGLOBALSIZE + globalDataLen), VM_FIXEDGLOBALSIZE); } else { innerParentPrg.GlobalData = new Uint8Array(0); } filteredData = nextPrg.FilteredData; i++; PrgStack[i] = null; } // while (i + 1 < PrgStack.length) for (let j = 0; j < filteredData.length; ++j) { wBuffer.insertByte(filteredData[j]); } writeSize = (rBuffer.ptr - wBuffer.ptr) & MAXWINMASK; } // if (blockLength <= writeSize) else { for (let j = i; j < PrgStack.length; ++j) { const theFlt = PrgStack[j]; if (theFlt != null && theFlt.NextWindow) { theFlt.NextWindow = false; } } return; } } // if (((blockStart - wBuffer.ptr) & MAXWINMASK) < writeSize) } // for (let i = 0; i < PrgStack.length; ++i) // Write any remaining bytes from rBuffer to wBuffer; RarWriteArea(wBuffer.ptr, rBuffer.ptr); // Now that the filtered buffer has been written, swap it back to rBuffer. rBuffer = wBuffer; } /** * Copy bytes from rBuffer to wBuffer. * @param {number} startPtr The starting point to copy from rBuffer. * @param {number} endPtr The ending point to copy from rBuffer. */ function RarWriteArea(startPtr, endPtr) { if (endPtr < startPtr) { console.error('endPtr < startPtr, endPtr=' + endPtr + ', startPtr=' + startPtr); // RarWriteData(startPtr, -(int)StartPtr & MAXWINMASK); // RarWriteData(0, endPtr); return; } else if (startPtr < endPtr) { RarWriteData(startPtr, endPtr - startPtr); } } /** * Writes bytes into wBuffer from rBuffer. * @param {number} offset The starting point to copy bytes from rBuffer. * @param {number} numBytes The number of bytes to copy. */ function RarWriteData(offset, numBytes) { if (wBuffer.ptr >= rBuffer.data.length) { return; } const leftToWrite = rBuffer.data.length - wBuffer.ptr; if (numBytes > leftToWrite) { numBytes = leftToWrite; } for (let i = 0; i < numBytes; ++i) { wBuffer.insertByte(rBuffer.data[offset + i]); } } /** * @param {VM_PreparedProgram} prg */ function RarExecuteCode(prg) { if (prg.GlobalData.length > 0) { const writtenFileSize = wBuffer.ptr; prg.InitR[6] = writtenFileSize; VM.setLowEndianValue(prg.GlobalData, writtenFileSize, 0x24); VM.setLowEndianValue(prg.GlobalData, (writtenFileSize >>> 32) >> 0, 0x28); VM.execute(prg); } } function RarReadEndOfBlock(bstream) { RarUpdateProgress(); let NewTable = false; let NewFile = false; if (bstream.readBits(1)) { NewTable = true; } else { NewFile = true; NewTable = !!bstream.readBits(1); } //tablesRead = !NewTable; return !(NewFile || NewTable && !RarReadTables(bstream)); } function RarInsertLastMatch(length, distance) { lastDist = distance; lastLength = length; } function RarInsertOldDist(distance) { rOldDist.splice(3,1); rOldDist.splice(0,0,distance); } /** * Copies len bytes from distance bytes ago in the buffer to the end of the * current byte buffer. * @param {number} length How many bytes to copy. * @param {number} distance How far back in the buffer from the current write * pointer to start copying from. */ function RarCopyString(len, distance) { let srcPtr = rBuffer.ptr - distance; // If we need to go back to previous buffers, then seek back. if (srcPtr < 0) { let l = rOldBuffers.length; while (srcPtr < 0) { srcPtr = rOldBuffers[--l].data.length + srcPtr; } // TODO: lets hope that it never needs to read across buffer boundaries while (len--) { rBuffer.insertByte(rOldBuffers[l].data[srcPtr++]); } } if (len > distance) { while (len--) { rBuffer.insertByte(rBuffer.data[srcPtr++]); } } else { rBuffer.insertBytes(rBuffer.data.subarray(srcPtr, srcPtr + len)); } } /** * @param {RarLocalFile} v */ function unpack(v) { // TODO: implement what happens when unpVer is < 15 const Ver = v.header.unpVer <= 15 ? 15 : v.header.unpVer; const Solid = v.header.flags.LHD_SOLID; const bstream = new bitjs.io.BitStream(v.fileData.buffer, true /* rtl */, v.fileData.byteOffset, v.fileData.byteLength ); rBuffer = new bitjs.io.ByteBuffer(v.header.unpackedSize); if (logToConsole) { info('Unpacking ' + v.filename + ' RAR v' + Ver); } switch (Ver) { case 15: // rar 1.5 compression Unpack15(bstream, Solid); break; case 20: // rar 2.x compression case 26: // files larger than 2GB Unpack20(bstream, Solid); break; case 29: // rar 3.x compression case 36: // alternative hash wBuffer = new bitjs.io.ByteBuffer(rBuffer.data.length); Unpack29(bstream, Solid); break; } // switch(method) rOldBuffers.push(rBuffer); // TODO: clear these old buffers when there's over 4MB of history return rBuffer.data; } /** */ class RarLocalFile { /** * @param {bitjs.io.ByteStream} bstream */ constructor(bstream) { this.header = new RarVolumeHeader(bstream); this.filename = this.header.filename; if (this.header.headType != FILE_HEAD && this.header.headType != ENDARC_HEAD) { this.isValid = false; info('Error! RAR Volume did not include a FILE_HEAD header '); } else { // read in the compressed data this.fileData = null; if (this.header.packSize > 0) { this.fileData = bstream.readBytes(this.header.packSize); this.isValid = true; } } } unrar() { if (!this.header.flags.LHD_SPLIT_BEFORE) { // unstore file if (this.header.method == 0x30) { if (logToConsole) { info('Unstore ' + this.filename); } this.isValid = true; currentBytesUnarchivedInFile += this.fileData.length; currentBytesUnarchived += this.fileData.length; // Create a new buffer and copy it over. const len = this.header.packSize; const newBuffer = new bitjs.io.ByteBuffer(len); newBuffer.insertBytes(this.fileData); this.fileData = newBuffer.data; } else { this.isValid = true; this.fileData = unpack(this); } } } } // Reads in the volume and main header. function unrar_start() { let bstream = bytestream.tee(); const header = new RarVolumeHeader(bstream); if (header.crc == 0x6152 && header.headType == 0x72 && header.flags.value == 0x1A21 && header.headSize == 7) { if (logToConsole) { info('Found RAR signature'); } const mhead = new RarVolumeHeader(bstream); if (mhead.headType != MAIN_HEAD) { info('Error! RAR did not include a MAIN_HEAD header'); } else { bytestream = bstream.tee(); } } } function unrar() { let bstream = bytestream.tee(); let localFile = null; do { localFile = new RarLocalFile(bstream); if (logToConsole) { info('RAR localFile isValid=' + localFile.isValid + ', volume packSize=' + localFile.header.packSize); localFile.header.dump(); } if (localFile && localFile.isValid && localFile.header.packSize > 0) { bytestream = bstream.tee(); totalUncompressedBytesInArchive += localFile.header.unpackedSize; allLocalFiles.push(localFile); currentFilename = localFile.header.filename; currentBytesUnarchivedInFile = 0; localFile.unrar(); if (localFile.isValid) { postMessage(new bitjs.archive.UnarchiveExtractEvent(localFile)); postProgress(); } } else if (localFile.header.packSize == 0 && localFile.header.unpackedSize == 0) { // Skip this file. localFile.isValid = true; } } while (localFile.isValid && bstream.getNumBytesLeft() > 0); totalFilesInArchive = allLocalFiles.length; postProgress(); bytestream = bstream.tee(); }; // event.data.file has the first ArrayBuffer. // event.data.bytes has all subsequent ArrayBuffers. onmessage = function(event) { const bytes = event.data.file || event.data.bytes; logToConsole = !!event.data.logToConsole; // This is the very first time we have been called. Initialize the bytestream. if (!bytestream) { bytestream = new bitjs.io.ByteStream(bytes); currentFilename = ''; currentFileNumber = 0; currentBytesUnarchivedInFile = 0; currentBytesUnarchived = 0; totalUncompressedBytesInArchive = 0; totalFilesInArchive = 0; allLocalFiles = []; postMessage(new bitjs.archive.UnarchiveStartEvent()); } else { bytestream.push(bytes); } if (unarchiveState === UnarchiveState.NOT_STARTED) { try { unrar_start(); unarchiveState = UnarchiveState.UNARCHIVING; } catch (e) { if (typeof e === 'string' && e.startsWith('Error! Overflowed')) { if (logToConsole) { console.dir(e); } // Overrun the buffer. unarchiveState = UnarchiveState.WAITING; postProgress(); } else { console.error('Found an error while unrarring'); console.dir(e); throw e; } } } if (unarchiveState === UnarchiveState.UNARCHIVING || unarchiveState === UnarchiveState.WAITING) { try { unrar(); unarchiveState = UnarchiveState.FINISHED; postMessage(new bitjs.archive.UnarchiveFinishEvent()); } catch (e) { if (typeof e === 'string' && e.startsWith('Error! Overflowed')) { if (logToConsole) { console.dir(e); } // Overrun the buffer. unarchiveState = UnarchiveState.WAITING; } else { console.error('Found an error while unrarring'); console.dir(e); throw e; } } } };