extra | ||
xnu | ||
.gitattributes | ||
.gitignore | ||
.travis.yml | ||
attrib.h | ||
AUTHORS.md | ||
base64.c | ||
base64.h | ||
base64.t.c | ||
BSDmakefile | ||
cache.c | ||
cache.h | ||
cachedsess.c | ||
cachedsess.h | ||
cachedsess.t.c | ||
cachefkcrt.c | ||
cachefkcrt.h | ||
cachefkcrt.t.c | ||
cachemgr.c | ||
cachemgr.h | ||
cachemgr.t.c | ||
cachessess.c | ||
cachessess.h | ||
cachessess.t.c | ||
cachetgcrt.c | ||
cachetgcrt.h | ||
cachetgcrt.t.c | ||
cert.c | ||
cert.h | ||
cert.t.c | ||
defaults.h | ||
dynbuf.c | ||
dynbuf.h | ||
dynbuf.t.c | ||
GNUmakefile | ||
HACKING.md | ||
khash.h | ||
LICENSE.md | ||
log.c | ||
log.h | ||
logbuf.c | ||
logbuf.h | ||
logger.c | ||
logger.h | ||
main.c | ||
main.t.c | ||
nat.c | ||
nat.h | ||
NEWS.md | ||
opts.c | ||
opts.h | ||
opts.t.c | ||
privsep.c | ||
privsep.h | ||
proc.c | ||
proc.h | ||
proxy.c | ||
proxy.h | ||
pxyconn.c | ||
pxyconn.h | ||
pxysslshut.c | ||
pxysslshut.h | ||
pxythrmgr.c | ||
pxythrmgr.h | ||
pxythrmgr.t.c | ||
README.md | ||
ssl.c | ||
ssl.h | ||
ssl.t.c | ||
sslproxy.1 | ||
sslproxy.conf | ||
sslproxy.conf.5 | ||
sys.c | ||
sys.h | ||
sys.t.c | ||
thrqueue.c | ||
thrqueue.h | ||
url.c | ||
url.h | ||
url.t.c | ||
util.c | ||
util.h | ||
util.t.c | ||
version.c | ||
version.h |
SSLproxy - transparent SSL/TLS proxy for diverting packets to other programs
Copyright (C) 2017, Soner Tari.
https://github.com/sonertari/SSLproxy
Copyright (C) 2009-2016, Daniel Roethlisberger.
http://www.roe.ch/SSLsplit
Overview
SSLproxy is a proxy for SSL/TLS encrypted network connections. It is intended to be used for decrypting and diverting network traffic to other programs, such as UTM services.
SSLproxy is designed to transparently terminate connections that are redirected to it using a network address translation engine. SSLproxy then terminates SSL/TLS and initiates a new SSL/TLS connection to the original destination address. Packets received on the client side are decrypted and sent to the program listening on a port given in the proxy specification. SSLproxy inserts in the first packet the address and port it is expecting to receive the packets back from the program. Upon receiving the packets back, SSLproxy re-encrypts and sends them to their original destination. The return traffic follows the same path back to the client.
This is similar in principle to divert sockets, where the packet filter diverts the packets to a program listening on a divert socket, and after processing the packets the program reinjects them into the kernel. If there is no program listening on that divert socket or the program does not reinject the packets into the kernel, the connection is effectively blocked. In the case of SSLproxy, SSLproxy acts as both the packet filter and the kernel, and the communication occurs over networking sockets.
For example, given the following proxy specification:
https 127.0.0.1 8443 up:8080
The SSLproxy listens for HTTPS connections on 127.0.0.1:8443. Upon receiving a connection from the Client, it decrypts and diverts the packets to a Program listening on 127.0.0.1:8080. After processing the packets, the Program gives them back to the SSLproxy listening on a dynamically assigned address, which the Program obtains from the first packet in the connection. Then the SSLproxy re-encrypts and sends the packets to the Server. The response from the Server follows the same path to the Client in reverse order.
Program
^^
/ \
v v
Client <-> SSLproxy <-> Server
The program that packets are diverted to should support this mode of operation. Specifically, it should be able to recognize the SSLproxy address in the first packet, and give the first and subsequent packets back to the SSLproxy listening on that address, instead of sending them to the original destination as it normally would.
SSLproxy supports plain TCP, plain SSL, HTTP, HTTPS, POP3, POP3S, SMTP, and SMTPS connections over both IPv4 and IPv6. SSLproxy fully supports Server Name Indication (SNI) and is able to work with RSA, DSA and ECDSA keys and DHE and ECDHE cipher suites. Depending on the version of OpenSSL, SSLproxy supports SSL 3.0, TLS 1.0, TLS 1.1 and TLS 1.2, and optionally SSL 2.0 as well.
For SSL/TLS connections, SSLproxy generates and signs forged X509v3 certificates on-the-fly, mimicking the original server certificate's subject DN, subjectAltName extension and other characteristics. SSLproxy has the ability to use existing certificates of which the private key is available, instead of generating forged ones. SSLproxy supports NULL-prefix CN certificates but otherwise does not implement exploits against specific certificate verification vulnerabilities in SSL/TLS stacks.
SSLproxy implements a number of defenses against mechanisms which would normally prevent MitM attacks or make them more difficult. SSLproxy can deny OCSP requests in a generic way. For HTTP and HTTPS connections, SSLproxy removes response headers for HPKP in order to prevent server-instructed public key pinning, for HSTS to avoid the strict transport security restrictions, and Alternate Protocols to prevent switching to QUIC/SPDY. HTTP compression, encodings and keep-alive are disabled to make the logs more readable.
Another reason to disable persistent connections is to reduce file descriptor usage. Accordingly, connections are closed if they remain idle for a certain period of time. The default timeout is 120 seconds, which can be changed in a configuration file.
In order to maximize the chances that a connection can be successfully split, SSLproxy does not verify upstream server certificates. Instead, all certificates including self-signed are accepted and if the expected hostname signaled in SNI is missing from the server certificate, it will be added to dynamically forged certificates.
SSLproxy does not automagically redirect any network traffic. To actually implement a proxy, you also need to redirect the traffic to the system running SSLproxy. Your options include running SSLproxy on a legitimate router, ARP spoofing, ND spoofing, DNS poisoning, deploying a rogue access point (e.g. using hostap mode), physical recabling, malicious VLAN reconfiguration or route injection, /etc/hosts modification and so on.
As SSLproxy is based on SSLsplit, this is a modified SSLsplit README file. See the manual page sslproxy(1) for details on using SSLproxy and setting up the various NAT engines.
Requirements
SSLproxy depends on the OpenSSL and libevent 2.x libraries.
The build depends on GNU make and a POSIX.2 environment in PATH
.
If available, pkg-config is used to locate and configure the dependencies.
The optional unit tests depend on the check library.
SSLproxy currently supports the following operating systems and NAT mechanisms:
- FreeBSD: pf rdr and divert-to, ipfw fwd, ipfilter rdr
- OpenBSD: pf rdr-to and divert-to
- Linux: netfilter REDIRECT and TPROXY
- Mac OS X: pf rdr and ipfw fwd
Support for local process information (-i
) is currently available on Mac OS X
and FreeBSD.
SSL/TLS features and compatibility greatly depend on the version of OpenSSL linked against; for optimal results, use a recent release of OpenSSL proper. OpenSSL forks like BoringSSL may or may not work.
Installation
With OpenSSL, libevent 2.x, pkg-config and check available, run:
make
make test # optional unit tests
make install # optional install
Dependencies are autoconfigured using pkg-config. If dependencies are not
picked up and fixing PKG_CONFIG_PATH
does not help, you can specify their
respective locations manually by setting OPENSSL_BASE
, LIBEVENT_BASE
and/or
CHECK_BASE
to the respective prefixes.
You can override the default install prefix (/usr/local
) by setting PREFIX
.
For more build options see GNUmakefile
.
Documentation
See NEWS.md
for release notes listing significant changes between releases.
See HACKING.md
for information on development and how to submit bug reports.
See AUTHORS.md
for the list of contributors.
License
SSLsplit is provided under a 2-clause BSD license.
SSLsplit contains components licensed under the MIT and APSL licenses.
See LICENSE.md
and the respective source file headers for details.
The modifications for SSLproxy are licensed under the same terms as SSLsplit.