Update man page for SSLproxy

This commit is contained in:
Soner Tari 2017-08-23 00:37:31 +03:00
parent 4fceaaa0e9
commit 28cfac12e9

View File

@ -1,8 +1,11 @@
.\" SSLsplit - transparent SSL/TLS interception
.\" SSLproxy - transparent SSL/TLS proxy
.\" Copyright (c) 2009-2016, Daniel Roethlisberger <daniel@roe.ch>
.\" All rights reserved.
.\" http://www.roe.ch/SSLsplit
.\"
.\" The modifications for SSLproxy are copyrighted to
.\" Soner Tari <sonertari@gmail.com>
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
@ -23,85 +26,91 @@
.\" (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
.\" THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
.\"
.TH SSLSPLIT 1 "1 April 2012"
.TH SSLPROXY 1 "22 August 2017"
.SH NAME
sslsplit \-\- transparent SSL/TLS interception
sslproxy \-\- transparent SSL/TLS proxy for diverting packets to programs
.SH SYNOPSIS
.na
.B sslsplit
[\fB-kCKwWOPZdDgGsrReumjplLSFi\fP] \fB-c\fP \fIpem\fP
.B sslproxy
[\fB-kCKwWOPZdDgGsrReumjplLSFif\fP] \fB-c\fP \fIpem\fP
\fIproxyspecs\fP [...]
.br
.B sslsplit
[\fB-kCKwWOPZdDgGsrReumjplLSFi\fP] \fB-c\fP \fIpem\fP \fB-t\fP \fIdir\fP
.B sslproxy
[\fB-kCKwWOPZdDgGsrReumjplLSFif\fP] \fB-c\fP \fIpem\fP \fB-t\fP \fIdir\fP
\fIproxyspecs\fP [...]
.br
.B sslsplit
[\fB-OPZwWdDgGsrReumjplLSFi\fP] \fB-t\fP \fIdir\fP
.B sslproxy
[\fB-OPZwWdDgGsrReumjplLSFif\fP] \fB-t\fP \fIdir\fP
\fIproxyspecs\fP [...]
.br
.B sslsplit -E
.B sslproxy [\fB-kCKwWOPZdDgGsrReumjplLSFi\fP] -f \fIconffile\fP
.br
.B sslsplit -V
.B sslproxy -E
.br
.B sslsplit -h
.B sslproxy -V
.br
.B sslproxy -h
.br
.ad
.SH DESCRIPTION
SSLsplit is a tool for man-in-the-middle attacks against SSL/TLS encrypted
network connections. It is intended to be useful for network forensics,
application security analysis and penetration testing.
As SSLproxy is based on SSLsplit, this is a modified SSLsplit man page.
.LP
SSLsplit is designed to transparently terminate connections that are redirected
to it using a network address translation engine. SSLsplit then terminates
SSL/TLS and initiates a new SSL/TLS connection to the original destination
address, while logging all data transmitted.
Besides NAT based operation, SSLsplit also supports static destinations and
using the server name indicated by SNI as upstream destination.
SSLsplit is purely a transparent proxy and cannot act as a HTTP or SOCKS proxy
configured in a browser.
See NAT ENGINES and PROXY SPECIFICATIONS below for specifics on the different
modes of operation.
SSLproxy is a proxy for SSL/TLS encrypted network connections. It is intended t
o be used for diverting network traffic to other programs, such as UTM services.
.LP
SSLsplit supports plain TCP, plain SSL, HTTP and HTTPS connections over both
IPv4 and IPv6.
SSLsplit fully supports Server Name Indication (SNI) and is able to work with
RSA, DSA and ECDSA keys and DHE and ECDHE cipher suites. Depending on the
version of OpenSSL, SSLsplit supports SSL 3.0, TLS 1.0, TLS 1.1 and TLS 1.2,
and optionally SSL 2.0 as well.
SSLproxy is designed to transparently terminate connections that are redirected
to it using a network address translation engine. SSLproxy then terminates SSL/
TLS and initiates a new SSL/TLS connection to the original destination address.
Packets received on the client side are decrypted and sent to the program liste
ning on a port given in the proxy specification. SSLproxy inserts in the first p
acket the address and port it is expecting to receive the packets back from the
program. Upon receiving the packets back, SSLproxy re-encrypts and sends them to
their original destination. The return traffic follows the same path back to th
e client.
.LP
For SSL and HTTPS connections, SSLsplit generates and signs forged X509v3
certificates on-the-fly, mimicking the original server certificate's subject
DN, subjectAltName extension and other characteristics.
SSLsplit has the ability to use existing certificates of which the private key
is available, instead of generating forged ones. SSLsplit supports NULL-prefix
CN certificates but otherwise does not implement exploits against specific
certificate verification vulnerabilities in SSL/TLS stacks.
The program that packets are diverted to should support this mode of operation.
Specifically, it should be able to recognize the SSLproxy address in the first p
acket, and give the first and subsequent packets back to SSLproxy listening on t
hat address, instead of sending them to the original destination as it normally
would.
.LP
SSLsplit implements a number of defences against mechanisms which would
normally prevent MitM attacks or make them more difficult.
SSLsplit can deny OCSP requests in a generic way.
For HTTP and HTTPS connections, SSLsplit removes response headers
for HPKP in order to prevent server-instructed public key pinning,
for HSTS to avoid the strict transport security restrictions,
and Alternate Protocols to prevent switching to QUIC/SPDY.
HTTP compression, encodings and keep-alive are disabled to make the logs more
readable.
SSLproxy supports plain TCP, plain SSL, HTTP, HTTPS, POP3, POP3S, SMTP, and SMTP
S connections over both
IPv4 and IPv6. SSLproxy fully supports Server Name Indication (SNI) and is able
to work with RSA, DSA and ECDSA keys and DHE and ECDHE cipher suites. Dependin
g on the version of OpenSSL, SSLproxy supports SSL 3.0, TLS 1.0, TLS 1.1 and TLS
1.2, and optionally SSL 2.0 as well.
.LP
As an experimental feature, SSLsplit supports STARTTLS and similar mechanisms,
where a protocol starts on a plain text TCP connection and is later upgraded to
SSL/TLS through protocol-specific means, such as the STARTTLS command in SMTP.
SSLsplit supports generic upgrading of TCP connections to SSL.
For SSL/TLS connections, SSLproxy generates and signs forged X509v3 certificates
on-the-fly, mimicking the original server certificate's subject DN, subjectAltN
ame extension and other characteristics. SSLproxy has the ability to use existi
ng certificates of which the private key is available, instead of generating for
ged ones. SSLproxy supports NULL-prefix CN certificates but otherwise does not
implement exploits against specific certificate verification vulnerabilities in
SSL/TLS stacks.
.LP
SSLproxy implements a number of defences against mechanisms which would normally
prevent MitM attacks or make them more difficult. SSLproxy can deny OCSP reque
sts in a generic way. For HTTP and HTTPS connections, SSLproxy removes response
headers for HPKP in order to prevent server-instructed public key pinning, for
HSTS to avoid the strict transport security restrictions, and Alternate Protocol
s to prevent switching to QUIC/SPDY. HTTP compression, encodings and keep-alive
are disabled to make the logs more readable.
.LP
Another reason to disable persistent connections is to reduce file descriptor us
age. Accordingly, connections are closed if they remain idle for a certain perio
d of time. The default timeout is 120 seconds, which can be changed in a configu
ration file.
.LP
In order to maximize the chances that a connection can be successfully split,
SSLsplit does not verify upstream server certificates. Instead, all
SSLproxy does not verify upstream server certificates. Instead, all
certificates including self-signed are accepted and if the expected hostname
signalled in SNI is missing from the server certificate, it will be added to
dynamically forged certificates.
.LP
SSLsplit does not automagically redirect any network traffic. To actually
implement an attack, you also need to redirect the traffic to the system
running \fBsslsplit\fP. Your options include running \fBsslsplit\fP on a
SSLproxy does not automagically redirect any network traffic. To actually
implement a proxy, you also need to redirect the traffic to the system
running \fBsslproxy\fP. Your options include running \fBsslproxy\fP on a
legitimate router, ARP spoofing, ND spoofing, DNS poisoning, deploying a rogue
access point (e.g. using hostap mode), physical recabling, malicious VLAN
reconfiguration or route injection, /etc/hosts modification and so on.
@ -113,7 +122,7 @@ If \fIpemfile\fP also contains the matching CA private key, it is also loaded,
otherwise it must be provided with \fB-k\fP.
If \fIpemfile\fP also contains Diffie-Hellman group parameters, they are also
loaded, otherwise they can be provided with \fB-g\fP.
If \fB-t\fP is also given, SSLsplit will only forge a certificate if there is
If \fB-t\fP is also given, SSLproxy will only forge a certificate if there is
no matching certificate in the provided certificate directory.
.TP
.B \-C \fIpemfile\fP
@ -126,9 +135,11 @@ be included in the certificate chain.
Detach from TTY and run as a daemon, logging error messages to syslog instead
of standard error.
.TP
.B \-D
.B \-D \fIlevel\fP
Run in debug mode, log lots of debugging information to standard error. This
also forces foreground mode and cannot be used with \fB-d\fP.
also forces foreground mode and cannot be used with \fB-d\fP. Debug \fIlevel\fP
can be a number from 1 to 4, a higher number meaning more verbosity.
.TP
.B \-e \fIengine\fP
Use \fIengine\fP as the default NAT engine for \fIproxyspecs\fP without
@ -138,7 +149,11 @@ returned by \fB-E\fP.
.TP
.B \-E
List all supported NAT engines available on the system and exit. See
NAT ENGINES for a list of NAT engines currently supported by SSLsplit.
NAT ENGINES for a list of NAT engines currently supported by SSLproxy.
.TP
.B \-f \fIconffile\fP
Read configuraion from \fIconffile\fP. Only certain configuration options can be
loaded from file.
.TP
.B \-F \fIlogspec\fP
Log connection content to separate log files with the given path specification
@ -148,18 +163,18 @@ Information about the connection will be contained in the filename only.
.TP
.B \-g \fIpemfile\fP
Use Diffie-Hellman group parameters from \fIpemfile\fP for Ephemereal
Diffie-Hellman (EDH/DHE) cipher suites. If \fB-g\fP is not given, SSLsplit
Diffie-Hellman (EDH/DHE) cipher suites. If \fB-g\fP is not given, SSLproxy
first tries to load DH parameters from the PEM files given by \fB-K\fP,
\fB-k\fP or \fB-c\fP. If no DH parameters are found in the key files, built-in
group parameters are automatically used.
The \fB-g\fP option is only available if SSLsplit was built against a version
The \fB-g\fP option is only available if SSLproxy was built against a version
of OpenSSL which supports Diffie-Hellman cipher suites.
.TP
.B \-G \fIcurve\fP
Use the named \fIcurve\fP for Ephemereal Elliptic Curve Diffie-Hellman (ECDHE)
cipher suites. If \fB-G\fP is not given, a default curve (\fBprime256v1\fP) is
used automatically.
The \fB-G\fP option is only available if SSLsplit was built against a version
The \fB-G\fP option is only available if SSLproxy was built against a version
of OpenSSL which supports Elliptic Curve Diffie-Hellman cipher suites.
.TP
.B \-h
@ -168,7 +183,7 @@ Display help on usage and exit.
.B \-i
For each connection, find the local process owning the connection. This makes
process information such as pid, owner:group and executable path for
connections originating on the same system as SSLsplit available to the
connections originating on the same system as SSLproxy available to the
connect log and enables the respective \fB-F\fP path specification directives.
\fB-i\fP is available on Mac OS X and FreeBSD; support for other platforms has
not been implemented yet.
@ -188,12 +203,12 @@ If \fIpemfile\fP also contains the matching CA certificate, it is also loaded,
otherwise it must be provided with \fB-c\fP.
If \fIpemfile\fP also contains Diffie-Hellman group parameters, they are also
loaded, otherwise they can be provided with \fB-g\fP.
If \fB-t\fP is also given, SSLsplit will only forge a certificate if there is
If \fB-t\fP is also given, SSLproxy will only forge a certificate if there is
no matching certificate in the provided certificate directory.
.TP
.B \-K \fIpemfile\fP
Use private key from \fIpemfile\fP for the leaf certificates forged on-the-fly.
If \fB-K\fP is not given, SSLsplit will generate a random 1024-bit RSA key.
If \fB-K\fP is not given, SSLproxy will generate a random 1024-bit RSA key.
.TP
.B \-l \fIlogfile\fP
Log connections to \fIlogfile\fP in a single line per connection format,
@ -219,8 +234,8 @@ HTTP requests are being treated as OCSP requests if the method is \fBGET\fP
and the URI contains a syntactically valid OCSPRequest ASN.1 structure
parsable by OpenSSL, or if the method is \fBPOST\fP and the \fBContent-Type\fP
is \fBapplication/ocsp-request\fP.
For this to be effective, SSLsplit must be handling traffic destined to the
port used by the OCSP server. In particular, SSLsplit must be configured to
For this to be effective, SSLproxy must be handling traffic destined to the
port used by the OCSP server. In particular, SSLproxy must be configured to
receive traffic to all ports used by OCSP servers of targetted certificates
within the \fIcertdir\fP specified by \fB-t\fP.
.TP
@ -228,20 +243,6 @@ within the \fIcertdir\fP specified by \fB-t\fP.
Write the process ID to \fIpidfile\fP and refuse to run if the \fIpidfile\fP
is already in use by another process.
.TP
.B \-P
Passthrough SSL/TLS connections which cannot be split instead of dropping them.
Connections cannot be split if \fB-c\fP and \fB-k\fP are not given and the
site does not match any certificate loaded using \fB-t\fP, or if the connection
to the original server gives SSL/TLS errors. Specifically, this happens if the
site requests a client certificate.
In these situations, passthrough with \fB-P\fP results in uninterrupted service
for the clients, while dropping is the more secure alternative if unmonitored
connections must be prevented.
Passthrough mode currently does not apply to SSL/TLS errors in the connection
from the client, since the connection from the client cannot easily be retried.
Specifically, \fB-P\fP does not currently work for clients that do not accept
forged certificates.
.TP
.B \-r \fIproto\fP
Force SSL/TLS protocol version on both client and server side to \fIproto\fP
by selecting the respective OpenSSL method constructor instead of the default
@ -275,7 +276,7 @@ used.
Normally, SSL/TLS implementations choose the most secure cipher suites, not the
fastest ones. By specifying an appropriate OpenSSL cipher list, the set of
cipher suites can be limited to fast algorithms, or \fBeNULL\fP cipher suites
can be added. Note that for connections to be successful, the SSLsplit cipher
can be added. Note that for connections to be successful, the SSLproxy cipher
suites must include at least one cipher suite supported by both the client and
the server of each connection.
See ciphers(1) for details on how to construct OpenSSL cipher lists.
@ -292,7 +293,7 @@ Use private key, certificate and certificate chain from PEM files in
certificates, instead of using certificates forged on-the-fly.
A single PEM file must contain a single private key, a single certificate and
optionally intermediate and root CA certificates to use as certificate chain.
When using \fB-t\fP, SSLsplit will first attempt to use a matching certificate
When using \fB-t\fP, SSLproxy will first attempt to use a matching certificate
loaded from \fIcertdir\fP.
If \fB-c\fP and \fB-k\fP are also given, certificates will be forged
on-the-fly for sites matching none of the common names in the certificates
@ -303,7 +304,7 @@ Otherwise, connections matching no certificate will be dropped, or if
.B \-u
Drop privileges after opening sockets and files by setting the real,
effective and stored user IDs to \fIuser\fP and loading the appropriate
primary and ancillary groups. If \fB-u\fP is not given, SSLsplit will drop
primary and ancillary groups. If \fB-u\fP is not given, SSLproxy will drop
privileges to the stored UID if EUID != UID (setuid bit scenario), or to
\fBnobody\fP if running with full \fBroot\fP privileges (EUID == UID == 0).
Due to an Apple bug, \fB-u\fP cannot be used with \fBpf\fP proxyspecs on
@ -328,34 +329,40 @@ newly generated, such as those loaded from \fB-t\fP.
.B \-Z
Disable SSL/TLS compression on all connections. This is useful if your
limiting factor is CPU, not network bandwidth.
The \fB-Z\fP option is only available if SSLsplit was built against a version
The \fB-Z\fP option is only available if SSLproxy was built against a version
of OpenSSL which supports disabling compression.
.SH "PROXY SPECIFICATIONS"
Proxy specifications (\fIproxyspecs\fP) consist of the connection type, listen
address and static forward address or address resolution mechanism (NAT engine,
SNI DNS lookup):
address and program port:
.LP
.na
\fBhttps\fP \fIlistenaddr port\fP
[\fInat-engine\fP|\fIfwdaddr port\fP|\fBsni\fP \fIport\fP]
\fBhttps\fP \fIlistenaddr port\fP \fIup:port\fP
.br
\fBssl\fP \fIlistenaddr port\fP
[\fInat-engine\fP|\fIfwdaddr port\fP|\fBsni\fP \fIport\fP]
\fBpop3s\fP \fIlistenaddr port\fP \fIup:port\fP
.br
\fBhttp\fP \fIlistenaddr port\fP
[\fInat-engine\fP|\fIfwdaddr port\fP]
\fBsmtps\fP \fIlistenaddr port\fP \fIup:port\fP
.br
\fBtcp\fP \fIlistenaddr port\fP
[\fInat-engine\fP|\fIfwdaddr port\fP]
\fBssl\fP \fIlistenaddr port\fP \fIup:port\fP
.br
\fBautossl\fP \fIlistenaddr port\fP
[\fInat-engine\fP|\fIfwdaddr port\fP]
\fBhttp\fP \fIlistenaddr port\fP \fIup:port\fP
.br
\fBpop3\fP \fIlistenaddr port\fP \fIup:port\fP
.br
\fBsmtp\fP \fIlistenaddr port\fP \fIup:port\fP
.br
\fBtcp\fP \fIlistenaddr port\fP \fIup:port\fP
.ad
.TP
\fBhttps\fP
SSL/TLS interception with HTTP protocol decoding, including the removal of
HPKP, HSTS and Alternate Protocol response headers.
.TP
\fBpop3s\fP
SSL/TLS interception with POP3 protocol decoding.
.TP
\fBsmtps\fP
SSL/TLS interception with SMTP protocol decoding.
.TP
\fBssl\fP
SSL/TLS interception without any lower level protocol decoding; decrypted
connection content is treated as opaque stream of bytes and not modified.
@ -364,58 +371,35 @@ connection content is treated as opaque stream of bytes and not modified.
Plain TCP connection without SSL/TLS, with HTTP protocol decoding, including
the removal of HPKP, HSTS and Alternate Protocol response headers.
.TP
\fBpop3\fP
Plain POP3 connection without SSL/TLS and with POP3 protocol
decoding.
.TP
\fBsmtp\fP
Plain SMTP connection without SSL/TLS and with SMTP protocol
decoding.
.TP
\fBtcp\fP
Plain TCP connection without SSL/TLS and without any lower level protocol
decoding; decrypted connection content is treated as opaque stream of bytes
and not modified.
.TP
\fBautossl\fP
Plain TCP connection until a Client Hello SSL/TLS message appears in the byte
stream, then automatic upgrade to SSL/TLS interception.
This is generic, protocol-independent STARTTLS support, that may erroneously
trigger on byte sequences that look like Client Hello messages even though
there was no actual STARTTLS command issued.
This is an experimental feature and may in its current state miss some Client
Hello messages depending on circumstances. YMMV.
Testing and patches highly welcome.
.TP
.I listenaddr port
IPv4 or IPv6 address and port or service name to listen on. This is the
address and port where the NAT engine should redirect connections to.
.TP
.I nat-engine
NAT engine to query for determining the original destination address and port
of transparently redirected connections.
If no engine is given, the default engine is used, unless overridden with
\fB-e\fP. When using a NAT engine, \fBsslsplit\fP needs to run on the same
system as the NAT rules redirecting the traffic to \fBsslsplit\fP.
See NAT ENGINES for a list of supported NAT engines.
.TP
.I fwdaddr port
Static destination address, IPv4 or IPv6, with port or service name. When this
is used, connections are forwarded to the given server address and port.
If \fIfwdaddr\fP is a hostname, it will be resolved to an IP address.
.TP
\fBsni\fP \fIport\fP
Use the Server Name Indication (SNI) hostname sent by the client in the
Client Hello SSL/TLS message to determine the IP address of the server to
connect to. This only works for \fBssl\fP and \fBhttps\fP \fIproxyspecs\fP and
needs a port or service name as an argument.
Because this requires DNS lookups, it is preferrable to use NAT engine
lookups (see above), except when that is not possible, such as when there is
no supported NAT engine or when running \fBsslsplit\fP on a different system
than the NAT rules redirecting the actual connections.
Note that when using \fB-j\fP with \fBsni\fP, you may need to prepare
\fIjaildir\fP to make name resolution work from within the chroot directory.
.I up:port
Port or service name that the program is listening for connections. This is the
port where the traffic should be diverted to.
.SH SIGNALS
A running \fBsslsplit\fP accepts SIGINT and SIGQUIT for a clean shutdown and
A running \fBsslproxy\fP accepts SIGINT and SIGQUIT for a clean shutdown and
SIGUSR1 to re-open the long-living log files (\fB-l\fP and \fB-L\fP).
Per-connection log files (\fB-S\fP and \fB-F\fP) are not re-opened because
their filename is specific to the connection.
.SH "LOG SPECIFICATIONS"
Log specifications are composed of zero or more printf-style directives;
ordinary characters are included directly in the output path.
SSLsplit current supports the following directives:
SSLproxy current supports the following directives:
.TP
.I %T
The initial connection time as an ISO 8601 UTC timestamp.
@ -468,13 +452,13 @@ this directive will be omitted from the output path.
A literal '%' character.
.LP
.SH "NAT ENGINES"
SSLsplit currently supports the following NAT engines:
SSLproxy currently supports the following NAT engines:
.TP
.B pf
OpenBSD packet filter (pf) \fBrdr\fP/\fBrdr-to\fP NAT redirects, also available
on FreeBSD, NetBSD and Mac OS X.
Fully supported, including IPv6.
Note that SSLsplit needs permission to open \fB/dev/pf\fP for reading, which by
Note that SSLproxy needs permission to open \fB/dev/pf\fP for reading, which by
default means that it needs to run under \fBroot\fP privileges.
Assuming inbound interface \fBem0\fP, first in old (FreeBSD, Mac OS X),
then in new (OpenBSD 4.7+) syntax:
@ -537,7 +521,7 @@ First in IPFW, then in pf \fBdivert-to\fP syntax:
.B ipfilter
IPFilter (ipfilter, ipf), available on many systems, including FreeBSD, NetBSD,
Linux and Solaris.
Note that SSLsplit needs permission to open \fB/dev/ipnat\fP for reading, which
Note that SSLproxy needs permission to open \fB/dev/ipnat\fP for reading, which
by default means that it needs to run under \fBroot\fP privileges.
Only supports IPv4 due to limitations in the SIOCGNATL ioctl(2) interface.
Assuming inbound interface \fBbge0\fP:
@ -564,7 +548,7 @@ interface.
-j REDIRECT --to-ports 10443\fP
.fi
.LP
Note that SSLsplit is only able to accept incoming connections if it binds
Note that SSLproxy is only able to accept incoming connections if it binds
to the correct IP address (e.g. 192.0.2.1) or on all interfaces (0.0.0.0).
REDIRECT uses the local interface address of the incoming interface as
target IP address, or 127.0.0.1 for locally generated packets.
@ -607,66 +591,20 @@ Note that return path filtering (rp_filter) also needs to be disabled on
interfaces which handle TPROXY redirected traffic.
.RE
.SH EXAMPLES
Matching the above NAT engine configuration samples, intercept HTTP and HTTPS
over IPv4 and IPv6 using forged certificates with CA private key \fBca.key\fP
With configuraion similar to the above NAT engine samples, intercept HTTPS and P
OP3S
over IPv4 using forged certificates with CA private key \fBca.key\fP
and certificate \fBca.crt\fP, logging connections to \fBconnect.log\fP and
connection data into separate files under \fB/tmp\fP (add \fB-e\fP
\fInat-engine\fP to select the appropriate engine if multiple engines are
available on your system):
available on your system) and diverting packets to a program running on address
127.0.0.1 and port 8080 for HTTPS and to another program running on address 127.
0.0.1 and port 8110 for POP3S:
.LP
.nf
\fBsslsplit -k ca.key -c ca.crt -l connect.log -L /tmp \\
https ::1 10443 https 127.0.0.1 10443 \\
http ::1 10080 http 127.0.0.1 10080\fP
.fi
.LP
If the Linux netfilter engine is used with the iptables REDIRECT target, it is
important to listen to the correct IP address (e.g. 192.0.2.1) or on all
interfaces (0.0.0.0), otherwise SSLsplit is not able to accept incoming
connections.
.LP
Intercepting IMAP/IMAPS using the same settings:
.LP
.nf
\fBsslsplit -k ca.key -c ca.crt -l connect.log -L /tmp \\
ssl ::1 10993 ssl 127.0.0.1 10993 \\
tcp ::1 10143 tcp 127.0.0.1 10143\fP
.fi
.LP
A more targetted setup, HTTPS only, using certificate/chain/key files from
\fB/path/to/cert.d\fP and statically redirecting to \fBwww.example.org\fP
instead of querying a NAT engine:
.LP
.nf
\fBsslsplit -t /path/to/cert.d -l connect.log -L /tmp \\
https ::1 10443 www.example.org 443 \\
https 127.0.0.1 10443 www.example.org 443\fP
.fi
.LP
The original example, but using SSL options optimized for speed by disabling
compression and selecting only fast cipher cipher suites and using a
precomputed private key \fBleaf.key\fP for the forged certificates. Most
significant speed increase is gained by choosing fast algorithms and small
keysizes for the CA and leaf private keys. Check \fBopenssl speed\fP for
algorithm performance on your system. Note that clients may not support all
algorithms and key sizes. Also, some clients warn their users about cipher
suites they consider weak.
.LP
.nf
\fBsslsplit -Z -s NULL:RC4:AES128:-DHE -K leaf.key \\
-k ca.key -c ca.crt -l connect.log -L /tmp \\
https ::1 10443 https 127.0.0.1 10443 \\
http ::1 10080 http 127.0.0.1 10080\fP
.fi
.LP
The original example, but running as a daemon under user \fBsslsplit\fP and
writing a PID file:
.LP
.nf
\fBsslsplit -d -p /var/run/sslsplit.pid -u sslsplit \\
-k ca.key -c ca.crt -l connect.log -L /tmp \\
https ::1 10443 https 127.0.0.1 10443 \\
http ::1 10080 http 127.0.0.1 10080\fP
\fBsslproxy -k ca.key -c ca.crt -l connect.log -L /tmp \\
https 127.0.0.1 8443 up:8080 \\
pop3s 127.0.0.1 8995 up:8110\fP
.fi
.LP
To generate a CA private key \fBca.key\fP and certificate \fBca.crt\fP using
@ -688,11 +626,11 @@ authorityKeyIdentifier = keyid:always,issuer:always
\fBopenssl genrsa -out ca.key 2048\fP
\fBopenssl req -new -nodes -x509 -sha256 -out ca.crt -key ca.key \\
-config x509v3ca.cnf -extensions v3_ca \\
-subj '/O=SSLsplit Root CA/CN=SSLsplit Root CA/' \\
-subj '/O=SSLproxy Root CA/CN=SSLproxy Root CA/' \\
-set_serial 0 -days 3650\fP
.fi
.SH NOTES
SSLsplit is able to handle a relatively high number of listeners and
SSLproxy is able to handle a relatively high number of listeners and
connections due to a multithreaded, event based architecture based on libevent,
taking advantage of platform specific select() replacements such as kqueue.
The main thread handles the listeners and signalling, while a number of worker
@ -705,19 +643,22 @@ certificates and SSL sessions. Logging is implemented in separate disk writer
threads to ensure that socket event handling threads don't have to block on
disk I/O.
DNS lookups are performed asynchroniously.
SSLsplit uses SSL session caching on both ends to minimize the amount of full
SSLproxy uses SSL session caching on both ends to minimize the amount of full
SSL handshakes, but even then, the limiting factor in handling SSL connections
are the actual bignum computations.
.SH "SEE ALSO"
openssl(1), ciphers(1), speed(1),
pf(4), ipfw(8), iptables(8), ip6tables(8), ip(8),
hostapd(8), arpspoof(8), parasite6(8), yersinia(8),
.I https://www.roe.ch/SSLsplit
.I https://www.roe.ch/SSLsplit,
.I https://github.com/sonertari/SSLproxy
.SH AUTHORS
SSLsplit was written by Daniel Roethlisberger <daniel@roe.ch>.
The following individuals have contributed code or documentation, in
chronological order of their first contribution:
.LP
SSLproxy has been developed by Soner Tari <sonertari@gmail.com>.
.LP
The following individuals have contributed code or documentation to the SSLsplit
project, in chronological order of their first contribution:
Steve Wills, Landon Fuller, Wayne Jensen, Rory McNamara, Alexander Neumann,
Adam Jacob Muller, Richard Poole, Maciej Kotowicz, Eun Soo Park and Christian
Groschupp.
@ -726,5 +667,7 @@ Use Github for submission of bug reports or patches:
.LP
.RS
.I https://github.com/droe/sslsplit
.LP
.I https://github.com/sonertari/sslproxy
.RE
.LP