SCJMapper-V2/OGL/CalcBezierCurve.cs
bm98 ac0ca1c208 V 2.23 - BETA Build 57
- update - Using .Net 4.5.2 Now (seems to handle some scaling issues WinForm apps)
- update - Try to find the SC path also as StarCitizen\Live (instead of Public) was mentioned for SC2.2.2 onwards ???
- fix - addbind UNDEF removed when assigned
- improvement - Issue a infobox if the Client folder cannot be found
               (please submit the complete folder structure of your installation as bug report ...)
- add - a table display for mappings
- some internal stuff (namespaces etc)
- update - doc SCJMapper_QGuide V2.23beta.pdf
2016-05-27 17:13:24 +02:00

210 lines
5.9 KiB
C#

using System;
using OpenTK;
using System.Collections.Generic;
namespace SCJMapper_V2.OGL
{
public abstract class CalcCurve
{
protected List<Vector2> m_points;
protected int m_resolution;
/// <summary>
/// Constructs a new OpenTK.BezierCurve.
/// </summary>
/// <param name="points">The points.</param>
protected CalcCurve( IEnumerable<Vector2> points, int resolution )
{
if ( points == null )
throw new ArgumentNullException( "points", "Must point to a valid list of Vector2 structures." );
this.m_points = new List<Vector2>( points );
this.m_resolution = resolution;
}
/// <summary>
/// Gets the points of this curve.
/// </summary>
public IList<Vector2> Points
{
get { return m_points; }
}
/// <summary>
/// Calculates the point with the specified t.
/// </summary>
/// <param name="t">The t value, between 0.0f and 1.0f.</param>
/// <returns>Resulting point.</returns>
abstract public Vector2 CalculatePoint( float t );
}
/// <summary>
/// BezierCurve from OpenTK (Wrapper)
///
/// </summary>
public class Bezier : CalcCurve
{
private BezierCurve m_curve;
/// <summary>
/// Constructs a new OpenTK.BezierCurve.
/// </summary>
/// <param name="points">The points.</param>
public Bezier( IEnumerable<Vector2> points, int resolution )
: base( points, resolution )
{
m_curve = new BezierCurve( m_points );
// resolution is not used here
}
/// <summary>
/// Calculates the point with the specified t.
/// </summary>
/// <param name="t">The t value, between 0.0f and 1.0f.</param>
/// <returns>Resulting point.</returns>
override public Vector2 CalculatePoint( float t )
{
return m_curve.CalculatePoint( t );
}
}
/// <summary>
/// Interpolating cubic B-spline
///
/// See http://www.ibiblio.org/e-notes/Splines/b-int.html
/// code http://www.ibiblio.org/e-notes/Splines/b-interpolate.js
/// </summary>
public class BezierInterpolation : CalcCurve
{
private int nPts = 2;
private int n1Pts = 3;
private int segments = 0;
private int segPts = 26;
private double[] B0;
private double[] B1;
private double[] B2;
private double[] B3;
private Vector2[] d; // tangents
private Vector2[] cout; // out array
/// <summary>
/// Constructs a new OpenTK.BezierCurve.
/// </summary>
/// <param name="points">The points.</param>
public BezierInterpolation( IEnumerable<Vector2> points, int resolution )
: base( points, resolution )
{
// tangets via user points
nPts = m_points.Count - 2;
// tangents not by user
nPts = m_points.Count;
n1Pts = nPts + 1;
segments = nPts - 1; // number of curve segments
segPts = (int)Math.Ceiling( ( double )resolution / ( double )segments ); // pts per curve segment @ resolution
d = new Vector2[m_points.Count];
cout = new Vector2[segments * segPts];
// init table 0.0 .. 1.0 with 0.04 inc
B0 = new double[segPts];
B1 = new double[segPts];
B2 = new double[segPts];
B3 = new double[segPts];
double t = 0; double increment = 1.0 / ( segPts - 1 );
for ( int i= 0; i < segPts; i++ ) {
double t1 = 1.0 - t;
double t12 = t1 * t1;
double t2 = t * t;
B0[i] = t1 * t12; B1[i] = 3.0 * t * t12; B2[i] = 3.0 * t2 * t1; B3[i] = t * t2;
t += increment;
}
findCPoints( );
CalcCurve( );
}
private void findCPoints( )
{
/*
// tangets via user points
d[0].X = m_points[nPts].X - m_points[0].X;
d[0].Y = m_points[nPts].Y - m_points[0].Y;
d[nPts - 1].X = -( m_points[n1Pts].X - m_points[nPts - 1].X );
d[nPts - 1].Y = -( m_points[n1Pts].Y - m_points[nPts - 1].Y );
*/
// tangents not by user
d[0].X = ( m_points[1].X - m_points[0].X ) / 3f;
d[0].Y = ( m_points[1].Y - m_points[0].Y ) / 3f;
d[nPts - 1].X = ( m_points[nPts - 1].X - m_points[nPts - 2].X ) / 3f;
d[nPts - 1].Y = ( m_points[nPts - 1].Y - m_points[nPts - 2].Y ) / 3f;
Vector2[] A = new Vector2[m_points.Count];
float[] Bi = new float[m_points.Count];
Bi[1] = -0.25f;
A[1].X = ( m_points[2].X - m_points[0].X - d[0].X ) / 4f;
A[1].Y = ( m_points[2].Y - m_points[0].Y - d[0].Y ) / 4f;
for ( int i = 2; i < nPts - 1; i++ ) {
Bi[i] = -1.0f / ( 4.0f + Bi[i - 1] );
A[i].X = -( m_points[i + 1].X - m_points[i - 1].X - A[i - 1].X ) * Bi[i];
A[i].Y = -( m_points[i + 1].Y - m_points[i - 1].Y - A[i - 1].Y ) * Bi[i];
}
for ( var i = nPts - 2; i > 0; i-- ) {
d[i].X = A[i].X + d[i + 1].X * Bi[i];
d[i].Y = A[i].Y + d[i + 1].Y * Bi[i];
}
}
private void CalcCurve( )
{
// curve segments
int segIdx = 0;
for ( int i = 0; i < segments; i++ ) {
// resolution per segment
for ( int k = 0; k < segPts; k++ ) {
cout[segIdx].X = ( float )( m_points[i].X * B0[k] + ( m_points[i].X + d[i].X ) * B1[k] + ( m_points[i + 1].X - d[i + 1].X ) * B2[k] + m_points[i + 1].X * B3[k] );
cout[segIdx].Y = ( float )( m_points[i].Y * B0[k] + ( m_points[i].Y + d[i].Y ) * B1[k] + ( m_points[i + 1].Y - d[i + 1].Y ) * B2[k] + m_points[i + 1].Y * B3[k] );
segIdx++;
}
}
}
/// <summary>
/// Calculates the point with the specified t.
/// </summary>
/// <param name="t">The t value, between 0.0f and 1.0f.</param>
/// <returns>Resulting point.</returns>
override public Vector2 CalculatePoint( float t )
{
int pt = ( int )(t * m_resolution); // get an index within resolution of the out array
// sanity checks
pt = ( pt < 0 ) ? 0 : pt;
pt = ( pt >= m_resolution ) ? m_resolution - 1 : pt;
return cout[pt];
}
}
}