mirror of
https://github.com/SCToolsfactory/SCJMapper-V2.git
synced 2024-11-10 13:10:25 +00:00
417 lines
14 KiB
C#
417 lines
14 KiB
C#
//
|
|
// Author: Ryan Seghers
|
|
//
|
|
// Copyright (C) 2013-2014 Ryan Seghers
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining
|
|
// a copy of this software and associated documentation files (the
|
|
// "Software"), to deal in the Software without restriction, including
|
|
// without limitation the irrevocable, perpetual, worldwide, and royalty-free
|
|
// rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
// display, perform, create derivative works from and/or sell copies of
|
|
// the Software, both in source and object code form, and to
|
|
// permit persons to whom the Software is furnished to do so, subject to
|
|
// the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be
|
|
// included in all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
//
|
|
using System;
|
|
using OpenTK;
|
|
|
|
namespace SCJMapper_V2
|
|
{
|
|
/// <summary>
|
|
/// Cubic spline interpolation.
|
|
/// Call Fit (or use the corrector constructor) to compute spline coefficients, then Eval to evaluate the spline at other X coordinates.
|
|
/// </summary>
|
|
/// <remarks>
|
|
/// <para>
|
|
/// This is implemented based on the wikipedia article:
|
|
/// http://en.wikipedia.org/wiki/Spline_interpolation
|
|
/// I'm not sure I have the right to include a copy of the article so the equation numbers referenced in
|
|
/// comments will end up being wrong at some point.
|
|
/// </para>
|
|
/// <para>
|
|
/// This is not optimized, and is not MT safe.
|
|
/// This can extrapolate off the ends of the splines.
|
|
/// You must provide points in X sort order.
|
|
/// </para>
|
|
/// </remarks>
|
|
public class CubicSpline
|
|
{
|
|
#region Fields
|
|
|
|
// N-1 spline coefficients for N points
|
|
private float[] a;
|
|
private float[] b;
|
|
|
|
// Save the original x and y for Eval
|
|
private float[] xOrig;
|
|
private float[] yOrig;
|
|
|
|
#endregion
|
|
|
|
#region Ctor
|
|
|
|
/// <summary>
|
|
/// Default ctor.
|
|
/// </summary>
|
|
public CubicSpline()
|
|
{
|
|
}
|
|
|
|
/// <summary>
|
|
/// Construct and call Fit.
|
|
/// </summary>
|
|
/// <param name="x">Input. X coordinates to fit.</param>
|
|
/// <param name="y">Input. Y coordinates to fit.</param>
|
|
/// <param name="startSlope">Optional slope constraint for the first point. Single.NaN means no constraint.</param>
|
|
/// <param name="endSlope">Optional slope constraint for the final point. Single.NaN means no constraint.</param>
|
|
public CubicSpline(float[] x, float[] y, float startSlope = float.NaN, float endSlope = float.NaN, bool debug = false)
|
|
{
|
|
Fit(x, y, startSlope, endSlope );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Construct and call Fit.
|
|
/// </summary>
|
|
/// <param name="xyPts">Input. XY coordinates to fit</param>
|
|
/// <param name="startSlope">Optional slope constraint for the first point. Single.NaN means no constraint.</param>
|
|
/// <param name="endSlope">Optional slope constraint for the final point. Single.NaN means no constraint.</param>
|
|
public CubicSpline( Vector2[] xyPts, float startSlope = float.NaN, float endSlope = float.NaN, bool debug = false )
|
|
{
|
|
float[] x = new float[xyPts.Length];
|
|
float[] y = new float[xyPts.Length];
|
|
for ( int i = 0; i < xyPts.Length; i++ ) {
|
|
x[i] = xyPts[i].X; y[i] = xyPts[i].Y;
|
|
}
|
|
Fit( x, y, startSlope, endSlope );
|
|
}
|
|
|
|
|
|
#endregion
|
|
|
|
#region Private Methods
|
|
|
|
/// <summary>
|
|
/// Throws if Fit has not been called.
|
|
/// </summary>
|
|
private void CheckAlreadyFitted( )
|
|
{
|
|
if (a == null) throw new Exception("Fit must be called before you can evaluate.");
|
|
}
|
|
|
|
private int _lastIndex = 0;
|
|
|
|
/// <summary>
|
|
/// Find where in xOrig the specified x falls, by simultaneous traverse.
|
|
/// This allows xs to be less than x[0] and/or greater than x[n-1]. So allows extrapolation.
|
|
/// This keeps state, so requires that x be sorted and xs called in ascending order, and is not multi-thread safe.
|
|
/// </summary>
|
|
private int GetNextXIndex(float x)
|
|
{
|
|
if (x < xOrig[_lastIndex])
|
|
{
|
|
throw new ArgumentException("The X values to evaluate must be sorted.");
|
|
}
|
|
|
|
while ((_lastIndex < xOrig.Length - 2) && (x > xOrig[_lastIndex + 1]))
|
|
{
|
|
_lastIndex++;
|
|
}
|
|
|
|
return _lastIndex;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Evaluate the specified x value using the specified spline.
|
|
/// </summary>
|
|
/// <param name="x">The x value.</param>
|
|
/// <param name="j">Which spline to use.</param>
|
|
/// <param name="debug">Turn on console output. Default is false.</param>
|
|
/// <returns>The y value.</returns>
|
|
private float EvalSpline(float x, int j)
|
|
{
|
|
float dx = xOrig[j + 1] - xOrig[j];
|
|
float t = (x - xOrig[j]) / dx;
|
|
float y = (1 - t) * yOrig[j] + t * yOrig[j + 1] + t * (1 - t) * (a[j] * (1 - t) + b[j] * t); // equation 9
|
|
return y;
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Fit*
|
|
|
|
/// <summary>
|
|
/// Fit x,y and then eval at points xs and return the corresponding y's.
|
|
/// This does the "natural spline" style for ends.
|
|
/// This can extrapolate off the ends of the splines.
|
|
/// You must provide points in X sort order.
|
|
/// </summary>
|
|
/// <param name="x">Input. X coordinates to fit.</param>
|
|
/// <param name="y">Input. Y coordinates to fit.</param>
|
|
/// <param name="xs">Input. X coordinates to evaluate the fitted curve at.</param>
|
|
/// <param name="startSlope">Optional slope constraint for the first point. Single.NaN means no constraint.</param>
|
|
/// <param name="endSlope">Optional slope constraint for the final point. Single.NaN means no constraint.</param>
|
|
/// <param name="debug">Turn on console output. Default is false.</param>
|
|
/// <returns>The computed y values for each xs.</returns>
|
|
public float[] FitAndEval(float[] x, float[] y, float[] xs, float startSlope = float.NaN, float endSlope = float.NaN)
|
|
{
|
|
Fit(x, y, startSlope, endSlope);
|
|
return Eval(xs);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Compute spline coefficients for the specified x,y points.
|
|
/// This does the "natural spline" style for ends.
|
|
/// This can extrapolate off the ends of the splines.
|
|
/// You must provide points in X sort order.
|
|
/// </summary>
|
|
/// <param name="x">Input. X coordinates to fit.</param>
|
|
/// <param name="y">Input. Y coordinates to fit.</param>
|
|
/// <param name="startSlope">Optional slope constraint for the first point. Single.NaN means no constraint.</param>
|
|
/// <param name="endSlope">Optional slope constraint for the final point. Single.NaN means no constraint.</param>
|
|
/// <param name="debug">Turn on console output. Default is false.</param>
|
|
public void Fit(float[] x, float[] y, float startSlope = float.NaN, float endSlope = float.NaN)
|
|
{
|
|
if (Single.IsInfinity(startSlope) || Single.IsInfinity(endSlope))
|
|
{
|
|
throw new Exception("startSlope and endSlope cannot be infinity.");
|
|
}
|
|
|
|
// Save x and y for eval
|
|
this.xOrig = x;
|
|
this.yOrig = y;
|
|
|
|
int n = x.Length;
|
|
float[] r = new float[n]; // the right hand side numbers: wikipedia page overloads b
|
|
|
|
TriDiagonalMatrixF m = new TriDiagonalMatrixF(n);
|
|
float dx1, dx2, dy1, dy2;
|
|
|
|
// First row is different (equation 16 from the article)
|
|
if (float.IsNaN(startSlope))
|
|
{
|
|
dx1 = x[1] - x[0];
|
|
m.C[0] = 1.0f / dx1;
|
|
m.B[0] = 2.0f * m.C[0];
|
|
r[0] = 3 * (y[1] - y[0]) / (dx1 * dx1);
|
|
}
|
|
else
|
|
{
|
|
m.B[0] = 1;
|
|
r[0] = startSlope;
|
|
}
|
|
|
|
// Body rows (equation 15 from the article)
|
|
for (int i = 1; i < n - 1; i++)
|
|
{
|
|
dx1 = x[i] - x[i - 1];
|
|
dx2 = x[i + 1] - x[i];
|
|
|
|
m.A[i] = 1.0f / dx1;
|
|
m.C[i] = 1.0f / dx2;
|
|
m.B[i] = 2.0f * (m.A[i] + m.C[i]);
|
|
|
|
dy1 = y[i] - y[i - 1];
|
|
dy2 = y[i + 1] - y[i];
|
|
r[i] = 3 * (dy1 / (dx1 * dx1) + dy2 / (dx2 * dx2));
|
|
}
|
|
|
|
// Last row also different (equation 17 from the article)
|
|
if (float.IsNaN(endSlope))
|
|
{
|
|
dx1 = x[n - 1] - x[n - 2];
|
|
dy1 = y[n - 1] - y[n - 2];
|
|
m.A[n - 1] = 1.0f / dx1;
|
|
m.B[n - 1] = 2.0f * m.A[n - 1];
|
|
r[n - 1] = 3 * (dy1 / (dx1 * dx1));
|
|
}
|
|
else
|
|
{
|
|
m.B[n - 1] = 1;
|
|
r[n - 1] = endSlope;
|
|
}
|
|
|
|
// k is the solution to the matrix
|
|
float[] k = m.Solve(r);
|
|
|
|
// a and b are each spline's coefficients
|
|
this.a = new float[n - 1];
|
|
this.b = new float[n - 1];
|
|
|
|
for (int i = 1; i < n; i++)
|
|
{
|
|
dx1 = x[i] - x[i - 1];
|
|
dy1 = y[i] - y[i - 1];
|
|
a[i - 1] = k[i - 1] * dx1 - dy1; // equation 10 from the article
|
|
b[i - 1] = -k[i] * dx1 + dy1; // equation 11 from the article
|
|
}
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Eval*
|
|
|
|
/// <summary>
|
|
/// Evaluate the spline at the specified x coordinate.
|
|
/// This can extrapolate off the ends of the splines.
|
|
/// The spline must already be computed before calling this, meaning you must have already called Fit() or FitAndEval().
|
|
/// </summary>
|
|
/// <param name="x">Input. X coordinate to evaluate the fitted curve at.</param>
|
|
/// <returns>The computed y values for x.</returns>
|
|
public float Eval( float x )
|
|
{
|
|
CheckAlreadyFitted( );
|
|
|
|
float y;
|
|
_lastIndex = 0; // Reset simultaneous traversal in case there are multiple calls
|
|
|
|
int j = GetNextXIndex( x );
|
|
|
|
// Evaluate using j'th spline
|
|
y = EvalSpline( x, j );
|
|
|
|
return y;
|
|
}
|
|
|
|
|
|
/// <summary>
|
|
/// Evaluate the spline at the specified x coordinates.
|
|
/// This can extrapolate off the ends of the splines.
|
|
/// You must provide X's in ascending order.
|
|
/// The spline must already be computed before calling this, meaning you must have already called Fit() or FitAndEval().
|
|
/// </summary>
|
|
/// <param name="x">Input. X coordinates to evaluate the fitted curve at.</param>
|
|
/// <returns>The computed y values for each x.</returns>
|
|
public float[] Eval( float[] x )
|
|
{
|
|
CheckAlreadyFitted( );
|
|
|
|
int n = x.Length;
|
|
float[] y = new float[n];
|
|
_lastIndex = 0; // Reset simultaneous traversal in case there are multiple calls
|
|
|
|
for ( int i = 0; i < n; i++ ) {
|
|
// Find which spline can be used to compute this x (by simultaneous traverse)
|
|
int j = GetNextXIndex( x[i] );
|
|
|
|
// Evaluate using j'th spline
|
|
y[i] = EvalSpline( x[i], j );
|
|
}
|
|
|
|
return y;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Evaluate (compute) the slope of the spline at the specified x coordinates.
|
|
/// This can extrapolate off the ends of the splines.
|
|
/// You must provide X's in ascending order.
|
|
/// The spline must already be computed before calling this, meaning you must have already called Fit() or FitAndEval().
|
|
/// </summary>
|
|
/// <param name="x">Input. X coordinates to evaluate the fitted curve at.</param>
|
|
/// <returns>The computed y values for each x.</returns>
|
|
public float[] EvalSlope(float[] x )
|
|
{
|
|
CheckAlreadyFitted();
|
|
|
|
int n = x.Length;
|
|
float[] qPrime = new float[n];
|
|
_lastIndex = 0; // Reset simultaneous traversal in case there are multiple calls
|
|
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
// Find which spline can be used to compute this x (by simultaneous traverse)
|
|
int j = GetNextXIndex(x[i]);
|
|
|
|
// Evaluate using j'th spline
|
|
float dx = xOrig[j + 1] - xOrig[j];
|
|
float dy = yOrig[j + 1] - yOrig[j];
|
|
float t = (x[i] - xOrig[j]) / dx;
|
|
|
|
// From equation 5 we could also compute q' (qp) which is the slope at this x
|
|
qPrime[i] = dy / dx
|
|
+ (1 - 2 * t) * (a[j] * (1 - t) + b[j] * t) / dx
|
|
+ t * (1 - t) * (b[j] - a[j]) / dx;
|
|
|
|
}
|
|
|
|
return qPrime;
|
|
}
|
|
|
|
#endregion
|
|
|
|
#region Static Methods
|
|
|
|
/// <summary>
|
|
/// Static all-in-one method to fit the splines and evaluate at X coordinates.
|
|
/// </summary>
|
|
/// <param name="x">Input. X coordinates to fit.</param>
|
|
/// <param name="y">Input. Y coordinates to fit.</param>
|
|
/// <param name="xs">Input. X coordinates to evaluate the fitted curve at.</param>
|
|
/// <param name="startSlope">Optional slope constraint for the first point. Single.NaN means no constraint.</param>
|
|
/// <param name="endSlope">Optional slope constraint for the final point. Single.NaN means no constraint.</param>
|
|
/// <returns>The computed y values for each xs.</returns>
|
|
public static float[] Compute(float[] x, float[] y, float[] xs, float startSlope = float.NaN, float endSlope = float.NaN )
|
|
{
|
|
CubicSpline spline = new CubicSpline();
|
|
return spline.FitAndEval(x, y, xs, startSlope, endSlope );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Fit the input x,y points using a 'geometric' strategy so that y does not have to be a single-valued
|
|
/// function of x.
|
|
/// </summary>
|
|
/// <param name="x">Input x coordinates.</param>
|
|
/// <param name="y">Input y coordinates, do not need to be a single-valued function of x.</param>
|
|
/// <param name="nOutputPoints">How many output points to create.</param>
|
|
/// <param name="xs">Output (interpolated) x values.</param>
|
|
/// <param name="ys">Output (interpolated) y values.</param>
|
|
public static void FitGeometric(float[] x, float[] y, int nOutputPoints, out float[] xs, out float[] ys)
|
|
{
|
|
// Compute distances
|
|
int n = x.Length;
|
|
float[] dists = new float[n]; // cumulative distance
|
|
dists[0] = 0;
|
|
float totalDist = 0;
|
|
|
|
for (int i = 1; i < n; i++)
|
|
{
|
|
float dx = x[i] - x[i - 1];
|
|
float dy = y[i] - y[i - 1];
|
|
float dist = (float)Math.Sqrt(dx * dx + dy * dy);
|
|
totalDist += dist;
|
|
dists[i] = totalDist;
|
|
}
|
|
|
|
// Create 'times' to interpolate to
|
|
float dt = totalDist / (nOutputPoints - 1);
|
|
float[] times = new float[nOutputPoints];
|
|
times[0] = 0;
|
|
|
|
for (int i = 1; i < nOutputPoints; i++)
|
|
{
|
|
times[i] = times[i - 1] + dt;
|
|
}
|
|
|
|
// Spline fit both x and y to times
|
|
CubicSpline xSpline = new CubicSpline();
|
|
xs = xSpline.FitAndEval(dists, x, times);
|
|
|
|
CubicSpline ySpline = new CubicSpline();
|
|
ys = ySpline.FitAndEval(dists, y, times);
|
|
}
|
|
|
|
#endregion
|
|
}
|
|
}
|