mirror of
https://github.com/dair-ai/Prompt-Engineering-Guide
synced 2024-11-06 09:20:31 +00:00
12 lines
1.0 KiB
Plaintext
12 lines
1.0 KiB
Plaintext
# LLM设置
|
||
|
||
在使用提示时,您将通过API或直接与LLM进行交互。您可以配置一些参数以获得不同提示的结果。
|
||
|
||
**Temperature** - 简而言之,温度越低,结果就越确定,因为模型将始终选择最可能的下一个token。增加温度可能会导致更多的随机性,从而鼓励更多样化或创造性的输出。我们实际上是增加了其他可能token的权重。在应用方面,我们可能希望对于基于事实的问答等任务使用较低的温度值,以鼓励更加事实和简洁的回答。对于生成诗歌或其他创意任务,增加温度值可能会更有益。
|
||
|
||
**Top_p** - 同样,使用温度的一种采样技术称为核心采样,您可以控制模型在生成响应时的确定性。如果您正在寻找确切和事实的答案,请将其保持较低。如果您正在寻找更多样化的答案,请将其增加到较高的值。
|
||
|
||
一般建议是只更改其中一个参数。
|
||
|
||
在开始一些基本示例之前,请记住,您的结果可能会因您使用的LLM版本而异。
|