Prompt-Engineering-Guide/pages/techniques/zeroshot.tr.mdx
2023-08-30 00:34:46 +03:00

23 lines
1.6 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Sıfır-Örnekli İstem
Bugünkü büyük LLM'ler, örneğin GPT-3, talimatlara uyma konusunda ayarlanmış ve büyük miktarda veri ile eğitilmiştir; bu yüzden bazı görevleri "sıfır örnekli" olarak gerçekleştirme yeteneğine sahiptirler.
Önceki bölümde birkaç sıfır-örnekli örnek denedik. İşte kullandığımız örneklerden biri:
*İstem:*
```
Metni tarafsız, olumsuz ya da olumlu olarak sınıflandırın.
Metin: Tatilin normal olduğunu düşünüyorum.
Hissiyat:
```
ıktı:*
```
Tarafsız
```
Yukarıdaki istemde, metnin yanında herhangi bir sınıflandırma örneği sunmadığımıza dikkat edin, LLM zaten "hissiyat"ı anlıyor -- işte bu, sıfır-örnekli yeteneklerin iş başında olmasıdır.
Talimat ayarlamanın, sıfır-örnekli öğrenmeyi iyileştirdiği gösterilmiştir [Wei ve ark. (2022)](https://arxiv.org/pdf/2109.01652.pdf). Talimat ayarlama, temel olarak modellerin talimatlar aracılığıyla tanımlanan veri setlerinde ince ayar yapılması kavramıdır. Ayrıca, modelin insan tercihleriyle daha iyi uyumlu hale getirilmesi amacıyla [RLHF](https://arxiv.org/abs/1706.03741) (insan geri bildiriminden pekiştirmeli öğrenme) talimat ayarlamanın ölçeklendirilmesinde benimsenmiştir. Bu yeni gelişme, ChatGPT gibi modelleri güçlendirir. Tüm bu yaklaşımlar ve yöntemler hakkında ilerleyen bölümlerde tartışacağız.
Sıfır-örnekli çalışmadığında, isteme gösterimler veya örnekler sağlanması önerilir, bu da az-örnekli isteme yol açar. Bir sonraki bölümde, az-örnekli isteme örneğini gösteriyoruz.