mirror of
https://github.com/dair-ai/Prompt-Engineering-Guide
synced 2024-11-10 01:13:36 +00:00
243 lines
25 KiB
Plaintext
243 lines
25 KiB
Plaintext
# ChatGPT İstem Mühendisliği
|
||
|
||
import { Callout, FileTree } from 'nextra-theme-docs'
|
||
import {Screenshot} from 'components/screenshot'
|
||
import CHATGPT1 from '../../img/chatgpt-1.png'
|
||
import CHATGPTCLASSIC from '../../img/chatgpt-classic.png'
|
||
|
||
Bu bölümde, ChatGPT için en son istem mühendisliği tekniklerini, ipuçlarını, uygulamaları, sınırlamaları, makaleleri ve ek okuma materyallerini ele alıyoruz.
|
||
|
||
<Callout emoji="⚠️">
|
||
Bu bölüm yoğun bir geliştirme sürecindedir.
|
||
</Callout>
|
||
|
||
Konular:
|
||
- [ChatGPT Tanıtımı](#chatgpt-tanıtımı)
|
||
- [Konuşma Görevinin İncelenmesi](#konuşma-görevinin-incelenmesi)
|
||
- [ChatGPT ile Konuşmalar](#chatgpt-ile-konuşmalar)
|
||
|
||
---
|
||
## ChatGPT Tanıtımı
|
||
|
||
ChatGPT, [OpenAI tarafından eğitilen](https://openai.com/blog/chatgpt) ve sohbet edebilme yeteneğine sahip yeni bir modeldir. Bu model, bir diyalog bağlamında uygun yanıtlar sağlamak üzere bir isteme içindeki talimatlara uyma üzerine eğitilmiştir. ChatGPT, soruları yanıtlamaya, tarif önermeye, belirli bir tarzda şarkı sözleri yazmaya, kod oluşturmaya ve çok daha fazlasına yardımcı olabilir.
|
||
|
||
ChatGPT, İnsan Geri Bildiriminden Güçlendirme Öğrenme (RLHF) kullanılarak eğitilmiştir. Bu model, önceki GPT iterasyonlarından çok daha yetenekli olmasına (ve ayrıca zararlı ve gerçeği yansıtmayan çıktıları azaltma üzerine eğitilmiş olmasına) rağmen, hala sınırlamaları vardır. Beton örneklerle bazı yetenekleri ve sınırlamaları ele alalım.
|
||
|
||
ChatGPT'nin araştırma önizlemesini [burada](chat.openai.com) kullanabilirsiniz ama aşağıdaki örnekler için OpenAI Playground'daki `Chat` modunu kullanacağız.
|
||
|
||
---
|
||
## Konuşma Görevinin İncelenmesi
|
||
|
||
Önceki kılavuzlardan birinde, konuşma yetenekleri ve rol belirlemeyi biraz ele aldık. LLM'yi belirli bir tarzda, belirli bir niyetle, belirli bir davranış ve kimlikle konuşma yapacak şekilde nasıl yönlendireceğimizi ele aldık.
|
||
|
||
Daha teknik ve bilimsel yanıtlar verebilen bir konuşma sistemini oluşturduğumuz önceki basit örneğimizi gözden geçirelim.
|
||
|
||
*İstem:*
|
||
```
|
||
Aşağıdaki, bir AI araştırma asistanıyla yapılan bir konuşmadır. Asistanın tonu teknik ve bilimseldir.
|
||
|
||
İnsan: Merhaba, sen kimsin?
|
||
AI: Selam! Ben bir AI araştırma asistanıyım. Bugün size nasıl yardımcı olabilirim?
|
||
İnsan: Bana kara deliklerin oluşumu hakkında bilgi verebilir misin?
|
||
AI:
|
||
```
|
||
|
||
Yukarıdaki örnekte, iki önemli bileşeni görebilirsiniz:
|
||
- bir **niyet** veya sohbet botunun ne olduğu açıklaması
|
||
- sohbet botunun yanıtları kullanma stilini veya tonunu yönlendiren **kimlik**
|
||
|
||
Yukarıdaki basit örnek, `text-davinci-003` kullanan metin tamamlama API'leri ile iyi çalışır. Daha yakın zamanda, OpenAI [`gpt-3.5-turbo` olarak adlandırılan daha güçlü ve daha ucuz bir modelin](https://openai.com/blog/introducing-chatgpt-and-whisper-apis) bu tür bir işlevsellik (chat tamamlama) için özellikle tasarlandığını duyurdu. Aslında OpenAI, bu tip durumlarda bile en iyi modelin bu olduğunu önermektedir. ChatGPT API'lerini kullanmanın diğer faydaları arasında maliyetin önemli ölçüde azalması (%90) ve verimliliği bulunur.
|
||
|
||
Snap Inc. ve Instacart gibi büyük şirketler, ChatGPT tarafından desteklenen, kişiselleştirilmiş önerilerden açık uçlu alışveriş hedeflerine kadar çeşitli konuşma özelliklerini ürünlerine zaten entegre ediyor.
|
||
|
||
---
|
||
## ChatGPT ile Konuşmalar
|
||
|
||
### Çok Turlu Konuşmalar
|
||
|
||
ChatGPT'nin yeteneklerini göstermeye başlamak için, yukarıdaki chatbot asistan örneğini kullanacağız ve sonuçları tartışacağız. `text-davinci-003` modeline kıyasla, ChatGPT'yi güçlendiren `gpt-3.5-turbo` modeli giriş olarak bir sohbet formatı kullanır. Model, bir dizi mesajı giriş olarak bekler ve bu mesajları kullanarak bir yanıt oluşturur.
|
||
|
||
*Giriş:*
|
||
```
|
||
SYSTEM: Siz bir AI araştırma asistanısınız. Teknik ve bilimsel bir ton kullanıyorsunuz.
|
||
USER: Merhaba, kim olduğunuzu öğrenebilir miyim?
|
||
ASSISTANT: Selam! Ben bir AI araştırma asistanıyım. Bugün size nasıl yardımcı olabilirim?
|
||
USER: Bana kara deliklerin oluşumu hakkında bilgi verebilir misiniz?
|
||
```
|
||
|
||
*Çıktı:*
|
||
```
|
||
ASSISTANT: Tabii ki! Kara delikler, kütlesi büyük bir yıldızın yakıtını tüketip kendi kütle çekimine kapılması sonucu oluşur. Bu çöküş, yıldızın inanılmaz derecede yoğun hale gelmesine ve ışığın bile kaçamadığı bu kadar güçlü bir kütle çekim alanı oluşturmasına neden olur. Dönüşü olmayan bu noktaya olay ufkı denir. Bir yıldız olay ufkunu geçtiğinde, artık bir kara delik olarak kabul edilir...
|
||
```
|
||
|
||
Yukarıdaki örnekte, girişi ve çıktıyı basitleştirdim ama ChatGPT sohbet tamamlama API'si mesajların belirli bir formatta olmasını gerektirir. Bu örneğin OpenAI Playground'daki `Sohbet Modu` kullanılarak nasıl görüneceğinin bir ekran görüntüsünü aşağıya ekledim:
|
||
|
||
<Screenshot src={CHATGPT1} alt="CHATGPT1" />
|
||
|
||
Örneğimiz için daha resmi API çağrısı aşağıdaki örneğe benzer bir şey olacaktır:
|
||
|
||
```python
|
||
import openai
|
||
|
||
openai.ChatCompletion.create(
|
||
model="gpt-3.5-turbo",
|
||
messages=[
|
||
{"role": "system", "content": "Siz bir AI araştırma asistanısınız. Teknik ve bilimsel bir ton kullanıyorsunuz."},
|
||
{"role": "user", "content": "Merhaba, kim olduğunuzu öğrenebilir miyim?"},
|
||
{"role": "assistant", "content": "Selam! Ben bir AI araştırma asistanıyım. Bugün size nasıl yardımcı olabilirim?"},
|
||
{"role": "user", "content": "Bana kara deliklerin oluşumu hakkında bilgi verebilir misiniz?"}
|
||
]
|
||
)
|
||
```
|
||
Aslında, gelecekte geliştiricilerin ChatGPT ile etkileşime girme şeklinin [Chat Markup Language] (https://github.com/openai/openai-python/blob/main/chatml.md) (kısaca ChatML) aracılığıyla yapılması beklenmektedir.
|
||
|
||
---
|
||
## Referanslar
|
||
|
||
- [Column Type Annotation using ChatGPT](https://arxiv.org/abs/2306.00745) (June 2023)
|
||
- [Enhancing Programming eTextbooks with ChatGPT Generated Counterfactual-Thinking-Inspired Questions](https://arxiv.org/abs/2306.00551) (June 2023)
|
||
- [ChatGPT an ENFJ, Bard an ISTJ: Empirical Study on Personalities of Large Language Models](https://arxiv.org/abs/2305.19926) (May 2023)
|
||
- [A Systematic Study and Comprehensive Evaluation of ChatGPT on Benchmark Datasets](https://arxiv.org/abs/2305.18486) (May 2023)
|
||
- [Chatbots put to the test in math and logic problems: A preliminary comparison and assessment of ChatGPT-3.5, ChatGPT-4, and Google Bard](https://arxiv.org/abs/2305.18618) (May 2023)
|
||
- [GPT Models in Construction Industry: Opportunities, Limitations, and a Use Case Validation](https://arxiv.org/abs/2305.18997) (May 2023)
|
||
- [Fairness of ChatGPT](https://arxiv.org/abs/2305.18569) (May 2023)
|
||
- [Mapping ChatGPT in Mainstream Media: Early Quantitative Insights through Sentiment Analysis and Word Frequency Analysis](https://arxiv.org/abs/2305.18340) (May 2023)
|
||
- [A Survey on ChatGPT: AI-Generated Contents, Challenges, and Solutions](https://arxiv.org/abs/2305.18339) (May 2023)
|
||
- [Do Language Models Know When They're Hallucinating References?](https://arxiv.org/abs/2305.18248) (May 2023)
|
||
- [HowkGPT: Investigating the Detection of ChatGPT-generated University Student Homework through Context-Aware Perplexity Analysis]
|
||
- [Playing repeated games with Large Language Models](https://arxiv.org/abs/2305.16867) (May 2023)
|
||
- [Zero is Not Hero Yet: Benchmarking Zero-Shot Performance of LLMs for Financial Tasks](https://arxiv.org/abs/2305.16633) (May 2023)
|
||
- [Leveraging LLMs for KPIs Retrieval from Hybrid Long-Document: A Comprehensive Framework and Dataset](https://arxiv.org/abs/2305.16344) (May 2023)
|
||
- [Marked Personas: Using Natural Language Prompts to Measure Stereotypes in Language Models](https://arxiv.org/abs/2305.18189v1) (May 2023)
|
||
- [The Larger They Are, the Harder They Fail: Language Models do not Recognize Identifier Swaps in Python](https://arxiv.org/pdf/2305.15507v1.pdf) (May 2023)
|
||
- [InternGPT: Solving Vision-Centric Tasks by Interacting with ChatGPT Beyond Language](https://arxiv.org/abs/2305.05662v3) (May 2023)
|
||
- [Narrative XL: A Large-scale Dataset For Long-Term Memory Models](https://arxiv.org/abs/2305.13877) (May 2023)
|
||
- [Does ChatGPT have Theory of Mind?](https://arxiv.org/abs/2305.14020) (May 2023)
|
||
- [Can LLM Already Serve as A Database Interface? A BIg Bench for Large-Scale Database Grounded Text-to-SQLs](https://arxiv.org/abs/2305.03111v2) (May 2023)
|
||
- [ZeroSCROLLS: A Zero-Shot Benchmark for Long Text Understanding](https://arxiv.org/abs/2305.14196) (May 2023)
|
||
- [Navigating Prompt Complexity for Zero-Shot Classification: A Study of Large Language Models in Computational Social Science](https://arxiv.org/abs/2305.14310) (May 2023)
|
||
- [ChatGPT-EDSS: Empathetic Dialogue Speech Synthesis Trained from ChatGPT-derived Context Word Embeddings](https://arxiv.org/abs/2305.13724) (May 2023)
|
||
- [Can LLMs facilitate interpretation of pre-trained language models?](https://arxiv.org/abs/2305.13386) (May 2023)
|
||
- [Can ChatGPT Detect Intent? Evaluating Large Language Models for Spoken Language Understanding](https://arxiv.org/abs/2305.13512) (May 2023)
|
||
- [LLM-empowered Chatbots for Psychiatrist and Patient Simulation: Application and Evaluation](https://arxiv.org/abs/2305.13614) (May 2023)
|
||
- [ChatGPT as your Personal Data Scientist](https://arxiv.org/abs/2305.13657) (May 2023)
|
||
- [Are Large Language Models Good Evaluators for Abstractive Summarization?](https://arxiv.org/abs/2305.13091) (May 2023)
|
||
- [Can ChatGPT Defend the Truth? Automatic Dialectical Evaluation Elicits LLMs' Deficiencies in Reasoning](https://arxiv.org/abs/2305.13160) (May 2023)
|
||
- [Evaluating ChatGPT's Performance for Multilingual and Emoji-based Hate Speech Detection](https://arxiv.org/abs/2305.13276) (May 2023)
|
||
- [ChatGPT to Replace Crowdsourcing of Paraphrases for Intent Classification: Higher Diversity and Comparable Model Robustness](https://arxiv.org/abs/2305.12947) (May 2023)
|
||
- [Distilling ChatGPT for Explainable Automated Student Answer Assessment](https://arxiv.org/abs/2305.12962) (May 2023)
|
||
- [Prompt ChatGPT In MNER: Improved multimodal named entity recognition method based on auxiliary refining knowledge from ChatGPT](https://arxiv.org/abs/2305.12212) (May 2023)
|
||
- [ChatGPT Is More Likely to Be Perceived as Male Than Female](https://arxiv.org/abs/2305.12564) (May 2023)
|
||
- [Observations on LLMs for Telecom Domain: Capabilities and Limitations](https://arxiv.org/abs/2305.13102) (May 2023)
|
||
- [Bits of Grass: Does GPT already know how to write like Whitman?](https://arxiv.org/abs/2305.11064) (May 2023)
|
||
- [Are Large Language Models Fit For Guided Reading?](https://arxiv.org/abs/2305.10645) (May 2023)
|
||
- [ChatGPT Perpetuates Gender Bias in Machine Translation and Ignores Non-Gendered Pronouns: Findings across Bengali and Five other Low-Resource Languages](https://arxiv.org/abs/2305.10510) (May 2023)
|
||
- [BAD: BiAs Detection for Large Language Models in the context of candidate screening](https://arxiv.org/abs/2305.10407) (May 2023)
|
||
- [MemoryBank: Enhancing Large Language Models with Long-Term Memory](https://arxiv.org/abs/2305.10250) (May 2023)
|
||
- [Knowledge Graph Completion Models are Few-shot Learners: An Empirical Study of Relation Labeling in E-commerce with LLMs](https://arxiv.org/abs/2305.09858) (May 2023)
|
||
- [A Preliminary Analysis on the Code Generation Capabilities of GPT-3.5 and Bard AI Models for Java Functions](https://arxiv.org/abs/2305.09402) (May 2023)
|
||
- [ChatGPT-4 Outperforms Experts and Crowd Workers in Annotating Political Twitter Messages with Zero-Shot Learning](https://arxiv.org/abs/2304.06588) (April 2023)
|
||
- [ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large Language Models in Multilingual Learning](https://arxiv.org/abs/2304.05613) (April 2023)
|
||
- [Distinguishing ChatGPT(-3.5, -4)-generated and human-written papers through Japanese stylometric analysis](https://arxiv.org/abs/2304.05534) (April 2023)
|
||
- [Zero-shot Temporal Relation Extraction with ChatGPT](https://arxiv.org/abs/2304.05454) (April 2023)
|
||
- [Can ChatGPT and Bard Generate Aligned Assessment Items? A Reliability Analysis against Human Performance](https://arxiv.org/abs/2304.05372) (April 2023)
|
||
- [Are Large Language Models Ready for Healthcare? A Comparative Study on Clinical Language Understanding](https://arxiv.org/abs/2304.05368) (April 2023)
|
||
- [The Wall Street Neophyte: A Zero-Shot Analysis of ChatGPT Over MultiModal Stock Movement Prediction Challenges](https://arxiv.org/abs/2304.05351) (April 2023)
|
||
- [Toxicity in ChatGPT: Analyzing Persona-assigned Language Models](https://arxiv.org/abs/2304.05335) (April 2023)
|
||
- [Multi-step Jailbreaking Privacy Attacks on ChatGPT](https://arxiv.org/abs/2304.05197) (April 2023)
|
||
- [Is ChatGPT a Good Sentiment Analyzer? A Preliminary Study](https://arxiv.org/abs/2304.04339) (April 2023)
|
||
- [A Preliminary Evaluation of ChatGPT for Zero-shot Dialogue Understanding](https://arxiv.org/abs/2304.04256) (April 2023)
|
||
- [Extractive Summarization via ChatGPT for Faithful Summary Generation](https://arxiv.org/abs/2304.04193) (April 2023)
|
||
- [What does ChatGPT return about human values? Exploring value bias in ChatGPT using a descriptive value theory](https://arxiv.org/abs/2304.03612) (April 2023)
|
||
- [On the Evaluations of ChatGPT and Emotion-enhanced Prompting for Mental Health Analysis](https://arxiv.org/abs/2304.03347) (April 2023)
|
||
- [ChatGPT-Crawler: Find out if ChatGPT really knows what it's talking about](https://arxiv.org/abs/2304.03325) (April 2023)
|
||
- [Should ChatGPT be Biased? Challenges and Risks of Bias in Large Language Models](https://arxiv.org/abs/2304.03738) (April 2023)
|
||
- [Synthesis of Mathematical programs from Natural Language Specifications](https://arxiv.org/abs/2304.03287) (April 2023)
|
||
- [Large language models effectively leverage document-level context for literary translation, but critical errors persist](https://arxiv.org/abs/2304.03245) (April 2023)
|
||
- [Investigating Chain-of-thought with ChatGPT for Stance Detection on Social Media](https://arxiv.org/abs/2304.03087) (April 2023)
|
||
- [ChatGPT for Shaping the Future of Dentistry: The Potential of Multi-Modal Large Language Model](https://arxiv.org/abs/2304.03086) (April 2023)
|
||
- [Can Large Language Models Play Text Games Well? Current State-of-the-Art and Open Questions](https://arxiv.org/abs/2304.02868) (April 2023)
|
||
- [Human-like Summarization Evaluation with ChatGPT](https://arxiv.org/abs/2304.02554) (April 2023)
|
||
- [Evaluation of ChatGPT Family of Models for Biomedical Reasoning and Classification](https://arxiv.org/abs/2304.02496) (April 2023)
|
||
- [Comparative Analysis of CHATGPT and the evolution of language models](https://arxiv.org/abs/2304.02468) (April 2023)
|
||
- [Unleashing the Power of ChatGPT for Translation: An Empirical Study](https://arxiv.org/abs/2304.02182) (April 2023)
|
||
- [Geotechnical Parrot Tales (GPT): Overcoming GPT hallucinations with prompt engineering for geotechnical applications](https://arxiv.org/abs/2304.02138) (April 2023)
|
||
- [Unlocking the Potential of ChatGPT: A Comprehensive Exploration of its Applications, Advantages, Limitations, and Future Directions in Natural Language Processing](https://arxiv.org/abs/2304.02017) (April 2023)
|
||
- [Summary of ChatGPT/GPT-4 Research and Perspective Towards the Future of Large Language Models](https://arxiv.org/abs/2304.01852) (April 2023)
|
||
- [Is ChatGPT a Highly Fluent Grammatical Error Correction System? A Comprehensive Evaluation](https://arxiv.org/abs/2304.01746) (April 2023)
|
||
- [Safety Analysis in the Era of Large Language Models: A Case Study of STPA using ChatGPT](https://arxiv.org/abs/2304.01246) (April 2023)
|
||
- [Large language models can rate news outlet credibility](https://arxiv.org/abs/2304.00228) (April 2023)
|
||
- [Can AI Chatbots Pass the Fundamentals of Engineering (FE) and Principles and Practice of Engineering (PE) Structural Exams?](https://arxiv.org/abs/2303.18149) (April 2023)
|
||
- [Can AI Put Gamma-Ray Astrophysicists Out of a Job?](https://arxiv.org/abs/2303.17853) (March 2023)
|
||
- [Comparing Abstractive Summaries Generated by ChatGPT to Real Summaries Through Blinded Reviewers and Text Classification Algorithms](https://arxiv.org/abs/2303.17650) (March 2023)
|
||
- [HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace](https://arxiv.org/abs/2303.17580) (March 2023)
|
||
- [SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models](https://arxiv.org/abs/2303.08896) (March 2023)
|
||
- [WavCaps: A ChatGPT-Assisted Weakly-Labelled Audio Captioning Dataset for Audio-Language Multimodal Research](https://arxiv.org/abs/2303.17395) (March 2023)
|
||
- [How well do Large Language Models perform in Arithmetic tasks?](https://arxiv.org/abs/2304.02015) (March 2023)
|
||
- [Assessing Cross-Cultural Alignment between ChatGPT and Human Societies: An Empirical Study](https://arxiv.org/abs/2303.17466) (March 2023)
|
||
- [Yes but.. Can ChatGPT Identify Entities in Historical Documents?](https://arxiv.org/abs/2303.17322) (March 2023)
|
||
- [Evaluation of ChatGPT for NLP-based Mental Health Applications](https://arxiv.org/abs/2303.15727) (March 2023)
|
||
- [A Perspectival Mirror of the Elephant: Investigating Language Bias on Google, ChatGPT, Wikipedia, and YouTube](https://arxiv.org/abs/2303.16281) (March 2023)
|
||
- [ChatGPT or academic scientist? Distinguishing authorship with over 99% accuracy using off-the-shelf machine learning tools](https://arxiv.org/abs/2303.16352) (March 2023)
|
||
- [Zero-shot Clinical Entity Recognition using ChatGPT](https://arxiv.org/abs/2303.16416) (March 2023)
|
||
- [ChatGPT is a Knowledgeable but Inexperienced Solver: An Investigation of Commonsense Problem in Large Language Models](https://arxiv.org/abs/2303.16421) (March 2023)
|
||
- [ChatGPT4PCG Competition: Character-like Level Generation for Science Birds](https://arxiv.org/abs/2303.15662) (March 2023)
|
||
- [ChatGPT as a Factual Inconsistency Evaluator for Abstractive Text Summarization](https://arxiv.org/abs/2303.15621) (March 2023)
|
||
- [Chat-REC: Towards Interactive and Explainable LLMs-Augmented Recommender System](https://arxiv.org/abs/2303.14524) (March 2023)
|
||
- [A comprehensive evaluation of ChatGPT's zero-shot Text-to-SQL capability](https://arxiv.org/abs/2303.13547) (March 2023)
|
||
- [Towards Making the Most of ChatGPT for Machine Translation](https://arxiv.org/abs/2303.13780) (March 2023)
|
||
- [Error Analysis Prompting Enables Human-Like Translation Evaluation in Large Language Models: A Case Study on ChatGPT](https://arxiv.org/abs/2303.13809) (March 2023)
|
||
- [ChatGPT Outperforms Crowd-Workers for Text-Annotation Tasks](https://arxiv.org/pdf/2303.15056v1.pdf) (March 2023)
|
||
- [ChatGPT or Grammarly? Evaluating ChatGPT on Grammatical Error Correction Benchmark](https://arxiv.org/abs/2303.13648) (March 2023)
|
||
- [ChatGPT and a New Academic Reality: AI-Written Research Papers and the Ethics of the Large Language Models in Scholarly Publishing](https://arxiv.org/abs/2303.13367) (March 2023)
|
||
- [Are LLMs the Master of All Trades? : Exploring Domain-Agnostic Reasoning Skills of LLMs](https://arxiv.org/abs/2303.12810) (March 2023)
|
||
- [Is ChatGPT A Good Keyphrase Generator? A Preliminary Study](https://arxiv.org/abs/2303.13001) (March 2023)
|
||
- [MM-REACT: Prompting ChatGPT for Multimodal Reasoning and Action](https://arxiv.org/abs/2303.11381) (March 2023)
|
||
- [Large Language Models Can Be Used to Estimate the Ideologies of Politicians in a Zero-Shot Learning Setting](https://arxiv.org/abs/2303.12057) (March 2023)
|
||
- [Chinese Intermediate English Learners outdid ChatGPT in deep cohesion: Evidence from English narrative writing](https://arxiv.org/abs/2303.11812) (March 2023)
|
||
- [A Comprehensive Capability Analysis of GPT-3 and GPT-3.5 Series Models](https://arxiv.org/abs/2303.10420) (March 2023)
|
||
- [ChatGPT as the Transportation Equity Information Source for Scientific Writing](https://arxiv.org/abs/2303.11158) (March 2023)
|
||
- [Translating Radiology Reports into Plain Language using ChatGPT and GPT-4 with Prompt Learning: Promising Results, Limitations, and Potential](https://arxiv.org/abs/2303.09038) (March 2023)
|
||
- [ChatGPT Participates in a Computer Science Exam](https://arxiv.org/abs/2303.09461) (March 2023)
|
||
- [Consistency Analysis of ChatGPT](https://arxiv.org/abs/2303.06273) (Mar 2023)
|
||
- [Algorithmic Ghost in the Research Shell: Large Language Models and Academic Knowledge Creation in Management Research](https://arxiv.org/abs/2303.07304) (Mar 2023)
|
||
- [Large Language Models in the Workplace: A Case Study on Prompt Engineering for Job Type Classification](https://arxiv.org/abs/2303.07142) (March 2023)
|
||
- [Seeing ChatGPT Through Students' Eyes: An Analysis of TikTok Data](https://arxiv.org/abs/2303.05349) (March 2023)
|
||
- [Extracting Accurate Materials Data from Research Papers with Conversational Language Models and Prompt Engineering -- Example of ChatGPT](https://arxiv.org/abs/2303.05352) (Mar 2023)
|
||
- [ChatGPT is on the horizon: Could a large language model be all we need for Intelligent Transportation?](https://arxiv.org/abs/2303.05382) (Mar 2023)
|
||
- [Making a Computational Attorney](https://arxiv.org/abs/2303.05383) (Mar 2023)
|
||
- [Does Synthetic Data Generation of LLMs Help Clinical Text Mining?](https://arxiv.org/abs/2303.04360) (Mar 2023)
|
||
- [MenuCraft: Interactive Menu System Design with Large Language Models](https://arxiv.org/abs/2303.04496) (Mar 2023)
|
||
- [A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT](https://arxiv.org/abs/2303.04226) (Mar 2023)
|
||
- [Exploring the Feasibility of ChatGPT for Event Extraction](https://arxiv.org/abs/2303.03836)
|
||
- [ChatGPT: Beginning of an End of Manual Annotation? Use Case of Automatic Genre Identification](https://arxiv.org/abs/2303.03953) (Mar 2023)
|
||
- [Is ChatGPT a Good NLG Evaluator? A Preliminary Study](https://arxiv.org/abs/2303.04048) (Mar 2023)
|
||
- [Will Affective Computing Emerge from Foundation Models and General AI? A First Evaluation on ChatGPT](https://arxiv.org/abs/2303.03186) (Mar 2023)
|
||
- [UZH_CLyp at SemEval-2023 Task 9: Head-First Fine-Tuning and ChatGPT Data Generation for Cross-Lingual Learning in Tweet Intimacy Prediction](https://arxiv.org/abs/2303.01194) (Mar 2023)
|
||
- [How to format inputs to ChatGPT models](https://github.com/openai/openai-cookbook/blob/main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb) (Mar 2023)
|
||
- [Can ChatGPT Assess Human Personalities? A General Evaluation Framework](https://arxiv.org/abs/2303.01248) (Mar 2023)
|
||
- [Cross-Lingual Summarization via ChatGPT](https://arxiv.org/abs/2302.14229) (Feb 2023)
|
||
- [ChatAug: Leveraging ChatGPT for Text Data Augmentation](https://arxiv.org/abs/2302.13007) (Feb 2023)
|
||
- [Dr ChatGPT, tell me what I want to hear: How prompt knowledge impacts health answer correctness](https://arxiv.org/abs/2302.13793) (Feb 2023)
|
||
- [An Independent Evaluation of ChatGPT on Mathematical Word Problems (MWP)](https://arxiv.org/abs/2302.13814) (Feb 2023)
|
||
- [ChatGPT: A Meta-Analysis after 2.5 Months](https://arxiv.org/abs/2302.13795) (Feb 2023)
|
||
- [Let's have a chat! A Conversation with ChatGPT: Technology, Applications, and Limitations](https://arxiv.org/abs/2302.13817) (Feb 2023)
|
||
- [Check Your Facts and Try Again: Improving Large Language Models with External Knowledge and Automated Feedback](https://arxiv.org/abs/2302.12813) (Feb 2023)
|
||
- [On the Robustness of ChatGPT: An Adversarial and Out-of-distribution Perspective](https://arxiv.org/abs/2302.12095) (Feb 2023)
|
||
- [How Generative AI models such as ChatGPT can be (Mis)Used in SPC Practice, Education, and Research? An Exploratory Study](https://arxiv.org/abs/2302.10916) (Feb 2023)
|
||
- [Can ChatGPT Understand Too? A Comparative Study on ChatGPT and Fine-tuned BERT](https://arxiv.org/abs/2302.10198) (Feb 2023)
|
||
- [A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT](https://arxiv.org/abs/2302.11382) (Feb 2023)
|
||
- [Zero-Shot Information Extraction via Chatting with ChatGPT](https://arxiv.org/abs/2302.10205) (Feb 2023)
|
||
- [ChatGPT: Jack of all trades, master of none](https://arxiv.org/abs/2302.10724) (Feb 2023)
|
||
- [A Pilot Evaluation of ChatGPT and DALL-E 2 on Decision Making and Spatial Reasoning](https://arxiv.org/abs/2302.09068) (Feb 2023)
|
||
- [Netizens, Academicians, and Information Professionals' Opinions About AI With Special Reference To ChatGPT](https://arxiv.org/abs/2302.07136) (Feb 2023)
|
||
- [Linguistic ambiguity analysis in ChatGPT](https://arxiv.org/abs/2302.06426) (Feb 2023)
|
||
- [ChatGPT versus Traditional Question Answering for Knowledge Graphs: Current Status and Future Directions Towards Knowledge Graph Chatbots](https://arxiv.org/abs/2302.06466) (Feb 2023)
|
||
- [What ChatGPT and generative AI mean for science](https://www.nature.com/articles/d41586-023-00340-6) (Feb 2023)
|
||
- [Applying BERT and ChatGPT for Sentiment Analysis of Lyme Disease in Scientific Literature](https://arxiv.org/abs/2302.06474) (Feb 2023)
|
||
- [Exploring AI Ethics of ChatGPT: A Diagnostic Analysis](https://arxiv.org/abs/2301.12867) (Jan 2023)
|
||
- [ChatGPT for Good? On Opportunities and Challenges of Large Language Models for Education](https://www.edu.sot.tum.de/fileadmin/w00bed/hctl/_my_direct_uploads/ChatGPT_for_Good_.pdf) (Jan 2023)
|
||
- [The political ideology of conversational AI: Converging evidence on ChatGPT's pro-environmental, left-libertarian orientation](https://arxiv.org/abs/2301.01768) (Jan 2023)
|
||
- [Techniques to improve reliability - OpenAI Cookbook](https://github.com/openai/openai-cookbook/blob/main/techniques_to_improve_reliability.md)
|
||
- [Awesome ChatGPT Prompts](https://github.com/f/awesome-chatgpt-prompts)
|
||
- [Introducing ChatGPT](https://openai.com/blog/chatgpt) (Nov 2022) |