Prompt-Engineering-Guide/pages/papers.ru.mdx
2023-06-05 00:26:16 +03:00

375 lines
44 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Статьи
Ниже приведены последние статьи (отсортированные по дате публикации) о создании промптов для больших языковых моделей (LLM). Мы ежедневно/еженедельно обновляем список статей.
## Обзоры
- [Few-shot Fine-tuning vs. In-context Learning: A Fair Comparison and Evaluation](https://arxiv.org/abs/2305.16938) (May 2023)
- [Jailbreaking ChatGPT via Prompt Engineering: An Empirical Study](https://arxiv.org/abs/2305.13860) (May 2023)
- [Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond](https://arxiv.org/abs/2304.13712) (April 2023)
- [Tool Learning with Foundation Models](https://arxiv.org/abs/2304.08354) (April 2023)
- [One Small Step for Generative AI, One Giant Leap for AGI: A Complete Survey on ChatGPT in AIGC Era](https://arxiv.org/abs/2304.06488) (April 2023)
- [A Bibliometric Review of Large Language Models Research from 2017 to 2023](https://arxiv.org/abs/2304.02020) (April 2023)
- [A Survey of Large Language Models](https://arxiv.org/abs/2303.18223) (April 2023)
- [Nature Language Reasoning, A Survey](https://arxiv.org/abs/2303.14725) (Mar 2023)
- [Augmented Language Models: a Survey](https://arxiv.org/abs/2302.07842) (Feb 2023)
- [A Survey for In-context Learning](https://arxiv.org/abs/2301.00234) (Dec 2022)
- [Towards Reasoning in Large Language Models: A Survey](https://arxiv.org/abs/2212.10403) (Dec 2022)
- [Reasoning with Language Model Prompting: A Survey](https://arxiv.org/abs/2212.09597) (Dec 2022)
- [Emergent Abilities of Large Language Models](https://arxiv.org/abs/2206.07682) (Jun 2022)
- [A Taxonomy of Prompt Modifiers for Text-To-Image Generation](https://arxiv.org/abs/2204.13988) (Apr 2022)
- [Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing](https://arxiv.org/abs/2107.13586) (Jul 2021)
## Подходы
- [Focused Prefix Tuning for Controllable Text Generation](https://arxiv.org/abs/2306.00369) (June 2023)
- [Exploring Lottery Prompts for Pre-trained Language Models](https://arxiv.org/abs/2305.19500) (May 2023)
- [Less Likely Brainstorming: Using Language Models to Generate Alternative Hypotheses](https://arxiv.org/abs/2305.19339) (May 2023)
- [Let's Verify Step by Step](https://arxiv.org/abs/2305.20050) (May 2023)
- [Universality and Limitations of Prompt Tuning](https://arxiv.org/abs/2305.18787) (May 2023)
- [MultiTool-CoT: GPT-3 Can Use Multiple External Tools with Chain of Thought Prompting](https://arxiv.org/abs/2305.16896) (May 2023)
- [PEARL: Prompting Large Language Models to Plan and Execute Actions Over Long Documents](https://arxiv.org/abs/2305.14564v1) (May 2023)
- [Reasoning with Language Model is Planning with World Model](https://arxiv.org/abs/2305.14992v1) (May 2023)
- [Self-Critique Prompting with Large Language Models for Inductive Instructions](https://arxiv.org/abs/2305.13733) (May 2023)
- [Better Zero-Shot Reasoning with Self-Adaptive Prompting](https://arxiv.org/abs/2305.14106) (May 2023)
- [Hierarchical Prompting Assists Large Language Model on Web Navigation](https://arxiv.org/abs/2305.14257) (May 2023)
- [Interactive Natural Language Processing](https://arxiv.org/abs/2305.13246) (May 2023)
- [Can We Edit Factual Knowledge by In-Context Learning?](https://arxiv.org/abs/2305.12740) (May 2023)
- [In-Context Learning of Large Language Models Explained as Kernel Regression](https://arxiv.org/abs/2305.12766) (May 2023)
- [Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large Language Models](https://arxiv.org/abs/2305.04091v3) (May 2023)
- [Meta-in-context learning in large language models](https://arxiv.org/abs/2305.12907) (May 2023)
- [Let's Sample Step by Step: Adaptive-Consistency for Efficient Reasoning with LLMs](https://arxiv.org/abs/2305.11860) (May 2023)
- [Post Hoc Explanations of Language Models Can Improve Language Models](https://arxiv.org/abs/2305.11426) (May 2023)
- [Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM Inference with Transferable Prompt](https://arxiv.org/abs/2305.11186) (May 2023)
- [TreePrompt: Learning to Compose Tree Prompts for Explainable Visual Grounding](https://arxiv.org/abs/2305.11497) (May 2023)
- [TELeR: A General Taxonomy of LLM Prompts for Benchmarking Complex Tasks](https://arxiv.org/abs/2305.11430) (May 2023)
- [Efficient Prompting via Dynamic In-Context Learning](https://arxiv.org/abs/2305.11170) (May 2023)
- [The Web Can Be Your Oyster for Improving Large Language Models](https://arxiv.org/abs/2305.10998) (May 2023)
- [Flatness-Aware Prompt Selection Improves Accuracy and Sample Efficiency](https://arxiv.org/abs/2305.10713) (May 2023)
- [Tree of Thoughts: Deliberate Problem Solving with Large Language Models](https://arxiv.org/abs/2305.10601) (May 2023)
- [ZeroPrompt: Streaming Acoustic Encoders are Zero-Shot Masked LMs](https://arxiv.org/abs/2305.10649) (May 2023)
- [Chain-of-Symbol Prompting Elicits Planning in Large Langauge Models](https://arxiv.org/abs/2305.10276) (May 2023)
- [CooK: Empowering General-Purpose Language Models with Modular and Collaborative Knowledge](https://arxiv.org/abs/2305.09955) (May 2023)
- [What In-Context Learning "Learns" In-Context: Disentangling Task Recognition and Task Learning](https://arxiv.org/abs/2305.09731) (May 2023)
- [Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling](https://arxiv.org/abs/2305.09993) (May 2023)
- [Satisfiability-Aided Language Models Using Declarative Prompting](https://arxiv.org/abs/2305.09656) (May 2023)
- [Pre-Training to Learn in Context](https://arxiv.org/abs/2305.09137) (May 2023)
- [Boosted Prompt Ensembles for Large Language Models](https://arxiv.org/abs/2304.05970) (April 2023)
- [Global Prompt Cell: A Portable Control Module for Effective Prompt](https://arxiv.org/abs/2304.05642) (April 2023)
- [Why think step-by-step? Reasoning emerges from the locality of experience](https://arxiv.org/abs/2304.03843) (April 2023)
- [Revisiting Automated Prompting: Are We Actually Doing Better?](https://arxiv.org/abs/2304.03609) (April 2023)
- [REFINER: Reasoning Feedback on Intermediate Representations](https://arxiv.org/abs/2304.01904) (April 2023)
- [Reflexion: an autonomous agent with dynamic memory and self-reflection](https://arxiv.org/abs/2303.11366) (March 2023)
- [CAMEL: Communicative Agents for "Mind" Exploration of Large Scale Language Model Society](https://arxiv.org/abs/2303.17760) (Mar 2023)
- [Self-Refine: Iterative Refinement with Self-Feedback](https://arxiv.org/abs/2303.17651v1) (Mar 2023)
- [kNN Prompting: Beyond-Context Learning with Calibration-Free Nearest Neighbor Inference](https://arxiv.org/abs/2303.13824) (Mar 2023)
- [Visual-Language Prompt Tuning with Knowledge-guided Context Optimization](https://arxiv.org/abs/2303.13283) (Mar 2023)
- [Fairness-guided Few-shot Prompting for Large Language Models](https://arxiv.org/abs/2303.13217) (Mar 2023)
- [Context-faithful Prompting for Large Language Models](https://arxiv.org/abs/2303.11315) (Mar 2023)
- [Is Prompt All You Need? No. A Comprehensive and Broader View of Instruction Learning](https://arxiv.org/abs/2303.10475) (Mar 2023)
- [UPRISE: Universal Prompt Retrieval for Improving Zero-Shot Evaluation](https://arxiv.org/abs/2303.08518) (Mar 2023)
- [Model-tuning Via Prompts Makes NLP Models Adversarially Robust](https://arxiv.org/abs/2303.07320) (Mar 2023)
- [Structure Pretraining and Prompt Tuning for Knowledge Graph Transfer](https://arxiv.org/abs/2303.03922) (March 2023)
- [CoTEVer: Chain of Thought Prompting Annotation Toolkit for Explanation Verification](https://arxiv.org/abs/2303.03628) (March 2023)
- [Larger language models do in-context learning differently](https://arxiv.org/abs/2303.03846) (March 2023)
- [OpenICL: An Open-Source Framework for In-context Learning](https://arxiv.org/abs/2303.02913) (March 2023)
- [Dynamic Prompting: A Unified Framework for Prompt Tuning](https://arxiv.org/abs/2303.02909) (March 2023)
- [Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learning](https://arxiv.org/abs/2303.02861) (March 2023)
- [Effectiveness of Data Augmentation for Prefix Tuning with Limited Data](https://arxiv.org/abs/2303.02577) (March 2023)
- [Mixture of Soft Prompts for Controllable Data Generation](https://arxiv.org/abs/2303.01580) (March 2023)
- [Prompt, Generate, then Cache: Cascade of Foundation Models makes Strong Few-shot Learners](https://arxiv.org/abs/2303.02151) (March 2023)
- [How Robust is GPT-3.5 to Predecessors? A Comprehensive Study on Language Understanding Tasks](https://arxiv.org/abs/2303.00293) (March 2023)
- [Can ChatGPT Understand Too? A Comparative Study on ChatGPT and Fine-tuned BERT](https://arxiv.org/pdf/2302.10198.pdf) (Feb 2023)
- [EvoPrompting: Language Models for Code-Level Neural Architecture Search](https://arxiv.org/abs/2302.14838) (Feb 2023)
- [In-Context Instruction Learning](https://arxiv.org/abs/2302.14691) (Feb 2023)
- [Chain of Hindsight Aligns Language Models with Feedback](https://arxiv.org/abs/2302.02676) (Feb 2023)
- [Language Is Not All You Need: Aligning Perception with Language Models](https://arxiv.org/abs/2302.14045) (Feb 2023)
- [Automatic Prompt Augmentation and Selection with Chain-of-Thought from Labeled Data](https://arxiv.org/abs/2302.12822) (Feb 2023)
- [Active Prompting with Chain-of-Thought for Large Language Models](https://arxiv.org/abs/2302.12246) (Feb 2023)
- [More than you've asked for: A Comprehensive Analysis of Novel Prompt Injection Threats to Application-Integrated Large Language Models](https://arxiv.org/abs/2302.12173) (Feb 2023)
- [A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT](https://arxiv.org/abs/2302.11382) (Feb 2023)
- [Guiding Large Language Models via Directional Stimulus Prompting](https://arxiv.org/abs/2302.11520) (Feb 2023)
- [How Does In-Context Learning Help Prompt Tuning?](https://arxiv.org/abs/2302.11521) (Feb 2023)
- [Scalable Prompt Generation for Semi-supervised Learning with Language Models](https://arxiv.org/abs/2302.09236) (Feb 2023)
- [Bounding the Capabilities of Large Language Models in Open Text Generation with Prompt Constraints](https://arxiv.org/abs/2302.09185) (Feb 2023)
- [À-la-carte Prompt Tuning (APT): Combining Distinct Data Via Composable Prompting](https://arxiv.org/abs/2302.07994) (Feb 2023)
- [GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks](https://arxiv.org/abs/2302.08043) (Feb 2023)
- [The Capacity for Moral Self-Correction in Large Language Models](https://arxiv.org/abs/2302.07459) (Feb 2023)
- [SwitchPrompt: Learning Domain-Specific Gated Soft Prompts for Classification in Low-Resource Domains](https://arxiv.org/abs/2302.06868) (Feb 2023)
- [Evaluating the Robustness of Discrete Prompts](https://arxiv.org/abs/2302.05619) (Feb 2023)
- [Compositional Exemplars for In-context Learning](https://arxiv.org/abs/2302.05698) (Feb 2023)
- [Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery](https://arxiv.org/abs/2302.03668) (Feb 2023)
- [Multimodal Chain-of-Thought Reasoning in Language Models](https://arxiv.org/abs/2302.00923) (Feb 2023)
- [Large Language Models Can Be Easily Distracted by Irrelevant Context](https://arxiv.org/abs/2302.00093) (Feb 2023)
- [Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models](https://arxiv.org/abs/2302.00618) (Feb 2023)
- [Progressive Prompts: Continual Learning for Language Models](https://arxiv.org/abs/2301.12314) (Jan 2023)
- [Batch Prompting: Efficient Inference with LLM APIs](https://arxiv.org/abs/2301.08721) (Jan 2023)
- [Demonstrate-Search-Predict: Composing retrieval and language models for knowledge-intensive NLP](https://arxiv.org/abs/2212.14024) (Dec 2022)
- [On Second Thought, Let's Not Think Step by Step! Bias and Toxicity in Zero-Shot Reasoning](https://arxiv.org/abs/2212.08061) (Dec 2022)
- [Constitutional AI: Harmlessness from AI Feedback](https://arxiv.org/abs/2212.08073) (Dec 2022)
- [Successive Prompting for Decomposing Complex Questions](https://arxiv.org/abs/2212.04092) (Dec 2022)
- [Large Language Models are reasoners with Self-Verification](https://arxiv.org/abs/2212.09561v1) (Dec 2022)
- [Discovering Language Model Behaviors with Model-Written Evaluations](https://arxiv.org/abs/2212.09251) (Dec 2022)
- [Structured Prompting: Scaling In-Context Learning to 1,000 Examples](https://arxiv.org/abs/2212.06713) (Dec 2022)
- [PAL: Program-aided Language Models](https://arxiv.org/abs/2211.10435) (Nov 2022)
- [Large Language Models Are Human-Level Prompt Engineers](https://arxiv.org/abs/2211.01910) (Nov 2022)
- [Ignore Previous Prompt: Attack Techniques For Language Models](https://arxiv.org/abs/2211.09527) (Nov 2022)
- [Machine Generated Text: A Comprehensive Survey of Threat Models and Detection Methods](https://arxiv.org/abs/2210.07321) (Nov 2022)
- [Teaching Algorithmic Reasoning via In-context Learning](https://arxiv.org/abs/2211.09066) (Nov 2022)
- [Enhancing Self-Consistency and Performance of Pre-Trained Language Models through Natural Language Inference](https://arxiv.org/abs/2211.11875) (Nov 2022)
- [Ask Me Anything: A simple strategy for prompting language models](https://paperswithcode.com/paper/ask-me-anything-a-simple-strategy-for) (Oct 2022)
- [Recitation-Augmented Language Models](https://arxiv.org/abs/2210.01296) (Oct 2022)
- [ReAct: Synergizing Reasoning and Acting in Language Models](https://arxiv.org/abs/2210.03629) (Oct 2022)
- [Prompting GPT-3 To Be Reliable](https://arxiv.org/abs/2210.09150) (Oct 2022)
- [Decomposed Prompting: A Modular Approach for Solving Complex Tasks](https://arxiv.org/abs/2210.02406) (Oct 2022)
- [Language Models Are Greedy Reasoners: A Systematic Formal Analysis of Chain-of-Thought](https://arxiv.org/abs/2210.01240v3) (Oct 2022)
- [Evaluating the Susceptibility of Pre-Trained Language Models via Handcrafted Adversarial Examples](https://arxiv.org/abs/2209.02128) (Sep 2022)
- [Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning](https://arxiv.org/abs/2209.14610) (Sep 2022)
- [Promptagator: Few-shot Dense Retrieval From 8 Examples](https://arxiv.org/abs/2209.11755) (Sep 2022)
- [Atlas: Few-shot Learning with Retrieval Augmented Language Models](https://arxiv.org/abs/2208.03299) (Nov 2022)
- [DocPrompting: Generating Code by Retrieving the Docs](https://arxiv.org/abs/2207.05987) (July 2022)
- [On the Advance of Making Language Models Better Reasoners](https://arxiv.org/abs/2206.02336) (June 2022)
- [Large Language Models are Zero-Shot Reasoners](https://arxiv.org/abs/2205.11916) (May 2022)
- [Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations](https://arxiv.org/abs/2205.11822) (May 2022)
- [MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning](https://arxiv.org/abs/2205.00445) (May 2022)
- [PPT: Pre-trained Prompt Tuning for Few-shot Learning](https://aclanthology.org/2022.acl-long.576/) (Mqy 2022)
- [Toxicity Detection with Generative Prompt-based Inference](https://arxiv.org/abs/2205.12390) (May 2022)
- [Learning to Transfer Prompts for Text Generation](https://arxiv.org/abs/2205.01543) (May 2022)
- [The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning](https://arxiv.org/abs/2205.03401) (May 2022)
- [A Taxonomy of Prompt Modifiers for Text-To-Image Generation](https://arxiv.org/abs/2204.13988) (Apr 2022)
- [PromptChainer: Chaining Large Language Model Prompts through Visual Programming](https://arxiv.org/abs/2203.06566) (Mar 2022)
- [Self-Consistency Improves Chain of Thought Reasoning in Language Models](https://arxiv.org/abs/2203.11171) (March 2022)
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
- [Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?](https://arxiv.org/abs/2202.12837) (Feb 2022)
- [Chain of Thought Prompting Elicits Reasoning in Large Language Models](https://arxiv.org/abs/2201.11903) (Jan 2022)
- [Show Your Work: Scratchpads for Intermediate Computation with Language Models](https://arxiv.org/abs/2112.00114) (Nov 2021)
- [AI Chains: Transparent and Controllable Human-AI Interaction by Chaining Large Language Model Prompts](https://arxiv.org/abs/2110.01691) (Oct 2021)
- [Generated Knowledge Prompting for Commonsense Reasoning](https://arxiv.org/abs/2110.08387) (Oct 2021)
- [Multitask Prompted Training Enables Zero-Shot Task Generalization](https://arxiv.org/abs/2110.08207) (Oct 2021)
- [Reframing Instructional Prompts to GPTk's Language](https://arxiv.org/abs/2109.07830) (Sep 2021)
- [Design Guidelines for Prompt Engineering Text-to-Image Generative Models](https://arxiv.org/abs/2109.06977) (Sep 2021)
- [Making Pre-trained Language Models Better Few-shot Learners](https://aclanthology.org/2021.acl-long.295) (Aug 2021)
- [Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity](https://arxiv.org/abs/2104.08786) (April 2021)
- [BERTese: Learning to Speak to BERT](https://aclanthology.org/2021.eacl-main.316) (April 2021)
- [The Power of Scale for Parameter-Efficient Prompt Tuning](https://arxiv.org/abs/2104.08691) (April 2021)
- [Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm](https://arxiv.org/abs/2102.07350) (Feb 2021)
- [Calibrate Before Use: Improving Few-Shot Performance of Language Models](https://arxiv.org/abs/2102.09690) (Feb 2021)
- [Prefix-Tuning: Optimizing Continuous Prompts for Generation](https://arxiv.org/abs/2101.00190) (Jan 2021)
- [Learning to Generate Task-Specific Adapters from Task Description](https://arxiv.org/abs/2101.00420) (Jan 2021)
- [Making Pre-trained Language Models Better Few-shot Learners](https://arxiv.org/abs/2012.15723) (Dec 2020)
- [Learning from Task Descriptions](https://aclanthology.org/2020.emnlp-main.105/) (Nov 2020)
- [AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts](https://arxiv.org/abs/2010.15980) (Oct 2020)
- [Language Models are Few-Shot Learners](https://arxiv.org/abs/2005.14165) (May 2020)
- [How Can We Know What Language Models Know?](https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00324/96460/How-Can-We-Know-What-Language-Models-Know) (July 2020)
- [Scaling Laws for Neural Language Models](https://arxiv.org/abs/2001.08361) (Jan 2020)
## Применения
- [Interpretable Math Word Problem Solution Generation Via Step-by-step Planning](https://arxiv.org/abs/2306.00784) (June 2023)
- [In-Context Learning User Simulators for Task-Oriented Dialog Systems](https://arxiv.org/abs/2306.00774) (June 2023)
- [SQL-PaLM: Improved Large Language ModelAdaptation for Text-to-SQL](https://arxiv.org/abs/2306.00739) (June 2023)
- [Effective Structured Prompting by Meta-Learning and Representative Verbalizer](https://arxiv.org/abs/2306.00618) (June 2023)
- [Layout and Task Aware Instruction Prompt for Zero-shot Document Image Question Answering](https://arxiv.org/abs/2306.00526) (June 2023)
- [Chain-Of-Thought Prompting Under Streaming Batch: A Case Study](https://arxiv.org/abs/2306.00550) (June 2023)
- [Red Teaming Language Model Detectors with Language Models](https://arxiv.org/abs/2305.19713) (May 2023)
- [Deliberate then Generate: Enhanced Prompting Framework for Text Generation](https://arxiv.org/abs/2305.19835) (May 2023)
- [What does the Failure to Reason with "Respectively" in Zero/Few-Shot Settings Tell Us about Language Models?](https://arxiv.org/abs/2305.19597) (May 2023)
- [ScoNe: Benchmarking Negation Reasoning in Language Models With Fine-Tuning and In-Context Learning](https://arxiv.org/abs/2305.19426) (May 2023)
- [SheetCopilot: Bringing Software Productivity to the Next Level through Large Language Models](https://arxiv.org/abs/2305.19308) (May 2023)
- [Grammar Prompting for Domain-Specific Language Generation with Large Language Models](https://arxiv.org/abs/2305.19234) (May 2023)
- [Mitigating Label Biases for In-context Learning](https://arxiv.org/abs/2305.19148) (May 2023)
- [Short Answer Grading Using One-shot Prompting and Text Similarity Scoring Model](https://arxiv.org/abs/2305.18638) (May 2023)
- [Strategic Reasoning with Language Models](https://arxiv.org/abs/2305.19165) (May 2023)
- [Dissecting Chain-of-Thought: A Study on Compositional In-Context Learning of MLPs](https://arxiv.org/abs/2305.18869) (May 2023)
- [Marked Personas: Using Natural Language Prompts to Measure Stereotypes in Language Models](https://arxiv.org/abs/2305.18189) (May 2023)
- [Leveraging Training Data in Few-Shot Prompting for Numerical Reasoning](https://arxiv.org/abs/2305.18170) (May 2023)
- [Exploring Effectiveness of GPT-3 in Grammatical Error Correction: A Study on Performance and Controllability in Prompt-Based Methods](https://arxiv.org/abs/2305.18156) (May 2023)
- [NOTABLE: Transferable Backdoor Attacks Against Prompt-based NLP Models](https://arxiv.org/abs/2305.17826) (May 2023)
- [Tab-CoT: Zero-shot Tabular Chain of Thought](https://arxiv.org/abs/2305.17812) (May 2023)
- [Evaluating GPT-3 Generated Explanations for Hateful Content Moderation](https://arxiv.org/abs/2305.17680) (May 2023)
- [Prompt-Guided Retrieval Augmentation for Non-Knowledge-Intensive Tasks](https://arxiv.org/abs/2305.17653) (May 2023)
- [Zero- and Few-Shot Event Detection via Prompt-Based Meta Learning]https://arxiv.org/abs/2305.17373) (May 2023)
- [Chain-of-Thought Hub: A Continuous Effort to Measure Large Language Models' Reasoning Performance](https://arxiv.org/abs/2305.17306) (May 2023)
- [Large Language Models Can be Lazy Learners: Analyze Shortcuts in In-Context Learning](https://arxiv.org/abs/2305.17256) (May 2023)
- [Heterogeneous Value Evaluation for Large Language Models](https://arxiv.org/abs/2305.17147) (May 2023)
- [PromptNER: Prompt Locating and Typing for Named Entity Recognition](https://arxiv.org/abs/2305.17104) (May 2023)
- [Small Language Models Improve Giants by Rewriting Their Outputs](https://arxiv.org/abs/2305.13514v1) (May 2023)
- [On the Planning Abilities of Large Language Models -- A Critical Investigation](https://arxiv.org/abs/2305.15771v1) (May 2023)
- [Beyond Chain-of-Thought, Effective Graph-of-Thought Reasoning in Large Language Models](https://arxiv.org/abs/2305.16582) (May 2023)
- [PRODIGY: Enabling In-context Learning Over Graphs](https://arxiv.org/abs/2305.12600v1) (May 2023)
- [Large Language Models are Few-Shot Health Learners](https://arxiv.org/abs/2305.15525v1) (May 2023)
- [Role-Play with Large Language Models](https://arxiv.org/abs/2305.16367) (May 2023)
- [Measuring Inductive Biases of In-Context Learning with Underspecified Demonstrations](https://arxiv.org/abs/2305.13299v1) (May 2023)
- [Fact-Checking Complex Claims with Program-Guided Reasoning](https://arxiv.org/abs/2305.12744v1) (May 2023)
- [Large Language Models as Tool Makers](https://arxiv.org/abs/2305.17126v1) (May 2023)
- [Iterative Forward Tuning Boosts In-context Learning in Language Models](https://arxiv.org/abs/2305.13016v2) (May 2023)
- [SwiftSage: A Generative Agent with Fast and Slow Thinking for Complex Interactive Tasks](https://arxiv.org/abs/2305.17390v1) (May 2023)
- [Interactive Natural Language Processing](https://arxiv.org/abs/2305.13246v1) (May 2023)
- [An automatically discovered chain-of-thought prompt generalizes to novel models and datasets](https://arxiv.org/abs/2305.02897v1) (May 2023)
- [Large Language Model Guided Tree-of-Thought](https://arxiv.org/abs/2305.08291v1) (May 2023)
- [Active Retrieval Augmented Generation](https://arxiv.org/abs/2305.06983v1) (May 2023)
- [A PhD Student's Perspective on Research in NLP in the Era of Very Large Language Models](https://arxiv.org/abs/2305.12544v1) (May 2023)
- [Visual Chain of Thought: Bridging Logical Gaps with Multimodal Infillings](https://arxiv.org/abs/2305.02317v1) (May 2023)
- [Mirages: On Anthropomorphism in Dialogue Systems](https://arxiv.org/abs/2305.09800v1) (May 2023)
- [Model evaluation for extreme risks](https://arxiv.org/abs/2305.15324v1) (May 2023)
- [Language Models Don't Always Say What They Think: Unfaithful Explanations in Chain-of-Thought Prompting](https://arxiv.org/abs/2305.04388v1) (May 2023)
- [Cognitive Reframing of Negative Thoughts through Human-Language Model Interaction](https://arxiv.org/abs/2305.02466v1) (May 2023)
- [PromptClass: Weakly-Supervised Text Classification with Prompting Enhanced Noise-Robust Self-Training](https://arxiv.org/abs/2305.13723) (May 2023)
- [Augmented Large Language Models with Parametric Knowledge Guiding](https://arxiv.org/abs/2305.04757v2) (May 2023)
- [Aligning Large Language Models through Synthetic Feedback](https://arxiv.org/abs/2305.13735) (May 2023)
- [Concept-aware Training Improves In-context Learning Ability of Language Models](https://arxiv.org/abs/2305.13775) (May 2023)
- [FrugalGPT: How to Use Large Language Models While Reducing Cost and Improving Performance](https://arxiv.org/abs/2305.05176v1) (May 2023)
- [Enhancing Black-Box Few-Shot Text Classification with Prompt-Based Data Augmentation](https://arxiv.org/abs/2305.13785) (May 2023)
- [Detecting automatically the layout of clinical documents to enhance the performances of downstream natural language processing](https://arxiv.org/abs/2305.13817) (May 2023)
- ["Is the Pope Catholic?" Applying Chain-of-Thought Reasoning to Understanding Conversational Implicatures](https://arxiv.org/abs/2305.13826) (May 2023)
- [Let's Think Frame by Frame: Evaluating Video Chain of Thought with Video Infilling and Prediction](https://arxiv.org/abs/2305.13903) (May 2023)
- [Generating Data for Symbolic Language with Large Language Models](https://arxiv.org/abs/2305.13917) (May 2023)
- [Make a Choice! Knowledge Base Question Answering with In-Context Learning](https://arxiv.org/abs/2305.13972) (May 2023)
- [Improving Language Models via Plug-and-Play Retrieval Feedback](https://arxiv.org/abs/2305.14002) (May 2023)
- [Multi-Granularity Prompts for Topic Shift Detection in Dialogue](https://arxiv.org/abs/2305.14006) (May 2023)
- [The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning](https://arxiv.org/abs/2305.14045) (May 2023)
- [Can Language Models Understand Physical Concepts?](https://arxiv.org/abs/2305.14057) (May 2023)
- [Evaluating Factual Consistency of Summaries with Large Language Models](https://arxiv.org/abs/2305.14069) (May 2023)
- [Dr.ICL: Demonstration-Retrieved In-context Learning](https://arxiv.org/abs/2305.14128) (May 2023)
- [Probing in Context: Toward Building Robust Classifiers via Probing Large Language Models](https://arxiv.org/abs/2305.14171) (May 2023)
- [Skill-Based Few-Shot Selection for In-Context Learning](https://arxiv.org/abs/2305.14210) (May 2023)
- [Exploring Chain-of-Thought Style Prompting for Text-to-SQL](https://arxiv.org/abs/2305.14215) (May 2023)
- [Enhancing Chat Language Models by Scaling High-quality Instructional Conversations](https://arxiv.org/abs/2305.14233) (May 2023)
- [On Learning to Summarize with Large Language Models as References](https://arxiv.org/abs/2305.14239) (May 2023)
- [Learning to Generate Novel Scientific Directions with Contextualized Literature-based Discovery](https://arxiv.org/abs/2305.14259) (May 2023)
- [Active Learning Principles for In-Context Learning with Large Language Models](https://arxiv.org/abs/2305.14264) (May 2023)
- [Two Failures of Self-Consistency in the Multi-Step Reasoning of LLMs](https://arxiv.org/abs/2305.14279) (May 2023)
- [Improving Factuality and Reasoning in Language Models through Multiagent Debate](https://arxiv.org/abs/2305.14325) (May 2023)
- [ChatCoT: Tool-Augmented Chain-of-Thought Reasoning on\\ Chat-based Large Language Models](https://arxiv.org/abs/2305.14323) (May 2023)
- [WikiChat: A Few-Shot LLM-Based Chatbot Grounded with Wikipedia](https://arxiv.org/abs/2305.14292) (May 2023)
- [Query Rewriting for Retrieval-Augmented Large Language Models](https://arxiv.org/abs/2305.14283) (May 2023)
- [Discrete Prompt Optimization via Constrained Generation for Zero-shot Re-ranker](https://arxiv.org/abs/2305.13729) (May 2023)
- [Element-aware Summarization with Large Language Models: Expert-aligned Evaluation and Chain-of-Thought Method](https://arxiv.org/abs/2305.13412) (May 2023)
- [Small Language Models Improve Giants by Rewriting Their Outputs](https://arxiv.org/abs/2305.13514) (May 2023)
- [Prompting and Evaluating Large Language Models for Proactive Dialogues: Clarification, Target-guided, and Non-collaboration](https://arxiv.org/abs/2305.13626) (May 2023)
- [Prompt-Based Monte-Carlo Tree Search for Goal-Oriented Dialogue Policy Planning](https://arxiv.org/abs/2305.13660) (May 2023)
- [Mitigating Language Model Hallucination with Interactive Question-Knowledge Alignment](https://arxiv.org/abs/2305.13669) (May 2023)
- [Making Language Models Better Tool Learners with Execution Feedback](https://arxiv.org/abs/2305.13068) (May 2023)
- [Text-to-SQL Error Correction with Language Models of Code](https://arxiv.org/abs/2305.13073) (May 2023)
- [Decomposed Prompting for Machine Translation Between Related Languages using Large Language Models](https://arxiv.org/abs/2305.13085) (May 2023)
- [SPARSEFIT: Few-shot Prompting with Sparse Fine-tuning for Jointly Generating Predictions and Natural Language Explanations](https://arxiv.org/abs/2305.13235) (May 2023)
- ["According to ..." Prompting Language Models Improves Quoting from Pre-Training Data](https://arxiv.org/abs/2305.13252) (May 2023)
- [Prompt-based methods may underestimate large language models' linguistic generalizations](https://arxiv.org/abs/2305.13264) (May 2023)
- [Chain of Knowledge: A Framework for Grounding Large Language Models with Structured Knowledge Bases](https://arxiv.org/abs/2305.13269) (May 2023)
- [Measuring Inductive Biases of In-Context Learning with Underspecified Demonstrations](https://arxiv.org/abs/2305.13299) (May 2023)
- [Automated Few-shot Classification with Instruction-Finetuned Language Models](https://arxiv.org/abs/2305.12576) (May 2023)
- [Enhancing Few-shot Text-to-SQL Capabilities of Large Language Models: A Study on Prompt Design Strategies](https://arxiv.org/abs/2305.12586) (May 2023)
- [MvP: Multi-view Prompting Improves Aspect Sentiment Tuple Prediction](https://arxiv.org/abs/2305.12627) (May 2023)
- [Learning Interpretable Style Embeddings via Prompting LLMs](https://arxiv.org/abs/2305.12696) (May 2023)
- [Enhancing Small Medical Learners with Privacy-preserving Contextual Prompting](https://arxiv.org/abs/2305.12723) (May 2023)
- [Fact-Checking Complex Claims with Program-Guided Reasoning](https://arxiv.org/abs/2305.12744) (May 2023)
- [A Benchmark on Extremely Weakly Supervised Text Classification: Reconcile Seed Matching and Prompting Approaches](https://arxiv.org/abs/2305.12749) (May 2023)
- [This Prompt is Measuring \<MASK\>: Evaluating Bias Evaluation in Language Models](https://arxiv.org/abs/2305.12757) (May 2023)
- [Enhancing Cross-lingual Natural Language Inference by Soft Prompting with Multilingual Verbalizer](https://arxiv.org/abs/2305.12761) (May 2023)
- [Evaluating Prompt-based Question Answering for Object Prediction in the Open Research Knowledge Graph](https://arxiv.org/abs/2305.12900) (May 2023)
- [Explaining How Transformers Use Context to Build Predictions](https://arxiv.org/abs/2305.12535) (May 2023)
- [PiVe: Prompting with Iterative Verification Improving Graph-based Generative Capability of LLMs](https://arxiv.org/abs/2305.12392) (May 2023)
- [PromptNER: A Prompting Method for Few-shot Named Entity Recognition via k Nearest Neighbor Search](https://arxiv.org/abs/2305.12217) (May 2023)
- [Logic-LM: Empowering Large Language Models with Symbolic Solvers for Faithful Logical Reasoning](https://arxiv.org/abs/2305.12295) (May 2023)
- [Enhancing Few-shot NER with Prompt Ordering based Data Augmentation](https://arxiv.org/abs/2305.11791) (May 2023)
- [Chain-of-thought prompting for responding to in-depth dialogue questions with LLM](https://arxiv.org/abs/2305.11792) (May 2023)
- [How to Prompt LLMs for Text-to-SQL: A Study in Zero-shot, Single-domain, and Cross-domain Settings](https://arxiv.org/abs/2305.11853) (May 2023)
- [Evaluation of medium-large Language Models at zero-shot closed book generative question answering](https://arxiv.org/abs/2305.11991) (May 2023)
- [Few-Shot Dialogue Summarization via Skeleton-Assisted Prompt Transfer](https://arxiv.org/abs/2305.12077) (May 2023)
- [Can NLP Models Correctly Reason Over Contexts that Break the Common Assumptions?](https://arxiv.org/abs/2305.12096) (May 2023)
- [Reasoning Implicit Sentiment with Chain-of-Thought Prompting](https://arxiv.org/abs/2305.11255) (May 2023)
- [Writing your own book: A method for going from closed to open book QA to improve robustness and performance of smaller LLMs](https://arxiv.org/abs/2305.11334) (May 2023)
- [AutoTrial: Prompting Language Models for Clinical Trial Design](https://arxiv.org/abs/2305.11366) (May 2023)
- [CRITIC: Large Language Models Can Self-Correct with Tool-Interactive Critiquing](https://arxiv.org/abs/2305.11738) (May 2023)
- [Controlling the Extraction of Memorized Data from Large Language Models via Prompt-Tuning](https://arxiv.org/abs/2305.11759) (May 2023)
- [Prompting with Pseudo-Code Instructions](https://arxiv.org/abs/2305.11790) (May 2023)
- [TrueTeacher: Learning Factual Consistency Evaluation with Large Language Models](https://arxiv.org/abs/2305.11171) (May 2023)
- [Aligning Instruction Tasks Unlocks Large Language Models as Zero-Shot Relation Extractors](https://arxiv.org/abs/2305.11159) (May 2023)
- [Exploiting Biased Models to De-bias Text: A Gender-Fair Rewriting Model](https://arxiv.org/abs/2305.11140) (May 2023)
- [Learning In-context Learning for Named Entity Recognition](https://arxiv.org/abs/2305.11038) (May 2023)
- [Take a Break in the Middle: Investigating Subgoals towards Hierarchical Script Generation](https://arxiv.org/abs/2305.10907) (May 2023)
- [TEPrompt: Task Enlightenment Prompt Learning for Implicit Discourse Relation Recognition](https://arxiv.org/abs/2305.10866) (May 2023)
- [Large Language Models can be Guided to Evade AI-Generated Text Detection](https://arxiv.org/abs/2305.10847) (May 2023)
- [Temporal Knowledge Graph Forecasting Without Knowledge Using In-Context Learning](https://arxiv.org/abs/2305.10613) (May 2023)
- [Prompting the Hidden Talent of Web-Scale Speech Models for Zero-Shot Task Generalization](https://arxiv.org/abs/2305.11095) (May 2023)
- [Think Outside the Code: Brainstorming Boosts Large Language Models in Code Generation](https://arxiv.org/abs/2305.10679) (May 2023)
- [Improving Language Model Negotiation with Self-Play and In-Context Learning from AI Feedback](https://arxiv.org/abs/2305.10142) (May 2023)
- [ConvXAI: Delivering Heterogeneous AI Explanations via Conversations to Support Human-AI Scientific Writing](https://arxiv.org/abs/2305.09770) (May 2023)
- [StructGPT: A General Framework for Large Language Model to Reason over Structured Data](https://arxiv.org/abs/2305.09645) (May 2023)
- [Towards Expert-Level Medical Question Answering with Large Language Models](https://arxiv.org/abs/2305.09617) (May 2023)
- [Large Language Models are Built-in Autoregressive Search Engines](https://arxiv.org/abs/2305.09612) (May 2023)
- [MsPrompt: Multi-step Prompt Learning for Debiasing Few-shot Event Detection](https://arxiv.org/abs/2305.09335) (May 2023)
- [Exploring the Impact of Layer Normalization for Zero-shot Neural Machine Translation](https://arxiv.org/abs/2305.09312) (May 2023)
- [SGP-TOD: Building Task Bots Effortlessly via Schema-Guided LLM Prompting](https://arxiv.org/abs/2305.09067) (May 2023)
- [Multi-modal Visual Understanding with Prompts for Semantic Information Disentanglement of Image](https://arxiv.org/abs/2305.09333) (May 2023)
- [Soft Prompt Decoding for Multilingual Dense Retrieval](https://arxiv.org/abs/2305.09025) (May 2023)
- [PaLM 2 Technical Report](https://ai.google/static/documents/palm2techreport.pdf) (May 2023)
- [Are LLMs All You Need for Task-Oriented Dialogue?](https://arxiv.org/abs/2304.06556) (April 2023)
- [HiPrompt: Few-Shot Biomedical Knowledge Fusion via Hierarchy-Oriented Prompting](https://arxiv.org/abs/2304.05973) (April 2023)
- [Approximating Human Evaluation of Social Chatbots with Prompting](https://arxiv.org/abs/2304.05253) (April 2023)
- [Automated Reading Passage Generation with OpenAI's Large Language Model](https://arxiv.org/abs/2304.04616) (April 2023)
- [WebBrain: Learning to Generate Factually Correct Articles for Queries by Grounding on Large Web Corpus](https://arxiv.org/abs/2304.04358) (April 2023)
- [Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition](https://arxiv.org/abs/2304.04704) (April 2023)
- [GPT detectors are biased against non-native English writers](https://arxiv.org/abs/2304.02819) (April 2023)
- [Zero-Shot Next-Item Recommendation using Large Pretrained Language Models](https://arxiv.org/abs/2304.03153) (April 2023)
- [Large Language Models as Master Key: Unlocking the Secrets of Materials Science with GPT](https://arxiv.org/abs/2304.02213) (April 2023)
- [Efficiently Aligned Cross-Lingual Transfer Learning for Conversational Tasks using Prompt-Tuning](https://arxiv.org/abs/2304.01295) (April 2023)
- [Better Language Models of Code through Self-Improvement](https://arxiv.org/abs/2304.01228) (April 2023)
- [PromptORE -- A Novel Approach Towards Fully Unsupervised Relation Extraction](https://arxiv.org/abs/2304.01209) (April)
- [Assessing Language Model Deployment with Risk Cards]() (April 2023)
- [Enhancing Large Language Models with Climate Resources](https://arxiv.org/abs/2304.00116) (March 2023)
- [BloombergGPT: A Large Language Model for Finance](https://arxiv.org/abs/2303.17564) (March 2023)
- [Medical Intervention Duration Estimation Using Language-enhanced Transformer Encoder with Medical Prompts](https://arxiv.org/abs/2303.17408) (March 2023)
- [Soft-prompt tuning to predict lung cancer using primary care free-text Dutch medical notes](https://arxiv.org/abs/2303.15846) (March 2023)
- [TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs](https://arxiv.org/abs/2303.16434) (March 2023)
- [Larger Probes Tell a Different Story: Extending Psycholinguistic Datasets Via In-Context Learning](https://arxiv.org/abs/2303.16445) (March 2023)
- [Linguistically Informed ChatGPT Prompts to Enhance Japanese-Chinese Machine Translation: A Case Study on Attributive Clauses](https://arxiv.org/abs/2303.15587) (March 2023)
- [Knowledge-augmented Frame Semantic Parsing with Hybrid Prompt-tuning](https://arxiv.org/abs/2303.14375) (March 2023)
- [Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation](https://arxiv.org/abs/2303.15413) (March 2023)
- [Zero-shot Model Diagnosis](https://arxiv.org/abs/2303.15441#) (March 2023)
- [Prompting Large Language Models to Generate Code-Mixed Texts: The Case of South East Asian Languages](https://arxiv.org/abs/2303.13592) (March 2023)
- [SPeC: A Soft Prompt-Based Calibration on Mitigating Performance Variability in Clinical Notes Summarization](https://arxiv.org/abs/2303.13035) (March 2023)
- [Large Language Models and Simple, Stupid Bugs](https://arxiv.org/abs/2303.11455) (March 2023)
- [Can Generative Pre-trained Transformers (GPT) Pass Assessments in Higher Education Programming Courses?](https://arxiv.org/abs/2303.09325) (Mar 2023)
- [SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models](https://arxiv.org/abs/2303.08896) (Mar 2023)
- [Large Language Models in the Workplace: A Case Study on Prompt Engineering for Job Type Classification](https://arxiv.org/abs/2303.07142) (March 2023)
- [ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for Document Information Extraction](https://arxiv.org/abs/2303.05063) (March 2023)
- [MathPrompter: Mathematical Reasoning using Large Language Models](https://arxiv.org/abs/2303.05398) (March 2023)
- [Prompt-Based Learning for Thread Structure Prediction in Cybersecurity Forums](https://arxiv.org/abs/2303.05400) (March 2023)
- [Choice Over Control: How Users Write with Large Language Models using Diegetic and Non-Diegetic Prompting](https://arxiv.org/abs/2303.03199) (March 2023)
- [Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering](https://arxiv.org/abs/2303.01903) (March 2023)
- [Soft Prompt Guided Joint Learning for Cross-Domain Sentiment Analysis](https://arxiv.org/abs/2303.00815) (March 2023)
- [SpeechPrompt v2: Prompt Tuning for Speech Classification Tasks](https://arxiv.org/abs/2303.00733) (March 2023)
- [Goal Driven Discovery of Distributional Differences via Language Descriptions](https://arxiv.org/abs/2302.14233) (Feb 2023)
- [Navigating the Grey Area: Expressions of Overconfidence and Uncertainty in Language Models](https://arxiv.org/abs/2302.13439) (Feb 2023)
- [TabGenie: A Toolkit for Table-to-Text Generation](https://arxiv.org/abs/2302.14169) (Feb 2023)
- [SGL-PT: A Strong Graph Learner with Graph Prompt Tuning](https://arxiv.org/abs/2302.12449) (Feb 2023)
- [Few-Shot Table-to-Text Generation with Prompt-based Adapter](https://arxiv.org/abs/2302.12468) (Feb 2023)
- [Language Models Are Few-shot Learners for Prognostic Prediction](https://arxiv.org/abs/2302.12692) (Feb 2023)
- [STA: Self-controlled Text Augmentation for Improving Text Classifications](https://arxiv.org/abs/2302.12784) (Feb 2023)
- [Check Your Facts and Try Again: Improving Large Language Models with External Knowledge and Automated Feedback](https://arxiv.org/abs/2302.12813) (Feb 2023)
- [How Generative AI models such as ChatGPT can be (Mis)Used in SPC Practice, Education, and Research? An Exploratory Study](https://arxiv.org/abs/2302.10916) (Feb 2023)
- [Grimm in Wonderland: Prompt Engineering with Midjourney to Illustrate Fairytales](https://arxiv.org/abs/2302.08961) (Feb 2023)
- [LabelPrompt: Effective Prompt-based Learning for Relation Classification](https://arxiv.org/abs/2302.08068) (Feb 2023)
- [Language Model Crossover: Variation through Few-Shot Prompting](https://arxiv.org/abs/2302.09236) (Feb 2023)
- [Prompt Tuning of Deep Neural Networks for Speaker-adaptive Visual Speech Recognition](https://arxiv.org/abs/2302.08102) (Feb 2023)
- [The Capacity for Moral Self-Correction in Large Language Models](https://arxiv.org/abs/2302.07459) (Feb 2023)
- [Prompting for Multimodal Hateful Meme Classification](https://arxiv.org/abs/2302.04156) (Feb 2023)
- [PLACES: Prompting Language Models for Social Conversation Synthesis](https://arxiv.org/abs/2302.03269) (Feb 2023)
- [Commonsense-Aware Prompting for Controllable Empathetic Dialogue Generation](https://arxiv.org/abs/2302.01441) (Feb 2023)
- [Crawling the Internal Knowledge-Base of Language Models](https://arxiv.org/abs/2301.12810) (Jan 2023)
- [Legal Prompt Engineering for Multilingual Legal Judgement Prediction](https://arxiv.org/abs/2212.02199) (Dec 2022)
- [Investigating Prompt Engineering in Diffusion Models](https://arxiv.org/abs/2211.15462) (Nov 2022)
- [Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering](https://arxiv.org/abs/2209.09513v2) (Sep 2022)
- [Conversing with Copilot: Exploring Prompt Engineering for Solving CS1 Problems Using Natural Language](https://arxiv.org/abs/2210.15157) (Oct 2022)
- [Piloting Copilot and Codex: Hot Temperature, Cold Prompts, or Black Magic?](https://arxiv.org/abs/2210.14699) (Oct 2022)
- [Plot Writing From Scratch Pre-Trained Language Models](https://aclanthology.org/2022.inlg-main.5) (July 2022)
- [Survey of Hallucination in Natural Language Generation](https://arxiv.org/abs/2202.03629) (Feb 2022)
## Коллекции
- [Chain-of-Thought Papers](https://github.com/Timothyxxx/Chain-of-ThoughtsPapers)
- [Papers with Code](https://paperswithcode.com/task/prompt-engineering)
- [Prompt Papers](https://github.com/thunlp/PromptPapers#papers)