mirror of
https://github.com/dair-ai/Prompt-Engineering-Guide
synced 2024-11-10 01:13:36 +00:00
23 lines
1.6 KiB
Plaintext
23 lines
1.6 KiB
Plaintext
# Sıfır-Örnekli İstem
|
||
Bugünkü büyük LLM'ler, örneğin GPT-3, talimatlara uyma konusunda ayarlanmış ve büyük miktarda veri ile eğitilmiştir; bu yüzden bazı görevleri "sıfır örnekli" olarak gerçekleştirme yeteneğine sahiptirler.
|
||
|
||
Önceki bölümde birkaç sıfır-örnekli örnek denedik. İşte kullandığımız örneklerden biri:
|
||
|
||
*İstem:*
|
||
```
|
||
Metni tarafsız, olumsuz ya da olumlu olarak sınıflandırın.
|
||
|
||
Metin: Tatilin normal olduğunu düşünüyorum.
|
||
Hissiyat:
|
||
```
|
||
|
||
*Çıktı:*
|
||
```
|
||
Tarafsız
|
||
```
|
||
|
||
Yukarıdaki istemde, metnin yanında herhangi bir sınıflandırma örneği sunmadığımıza dikkat edin, LLM zaten "hissiyat"ı anlıyor -- işte bu, sıfır-örnekli yeteneklerin iş başında olmasıdır.
|
||
|
||
Talimat ayarlamanın, sıfır-örnekli öğrenmeyi iyileştirdiği gösterilmiştir [Wei ve ark. (2022)](https://arxiv.org/pdf/2109.01652.pdf). Talimat ayarlama, temel olarak modellerin talimatlar aracılığıyla tanımlanan veri setlerinde ince ayar yapılması kavramıdır. Ayrıca, modelin insan tercihleriyle daha iyi uyumlu hale getirilmesi amacıyla [RLHF](https://arxiv.org/abs/1706.03741) (insan geri bildiriminden pekiştirmeli öğrenme) talimat ayarlamanın ölçeklendirilmesinde benimsenmiştir. Bu yeni gelişme, ChatGPT gibi modelleri güçlendirir. Tüm bu yaklaşımlar ve yöntemler hakkında ilerleyen bölümlerde tartışacağız.
|
||
|
||
Sıfır-örnekli çalışmadığında, isteme gösterimler veya örnekler sağlanması önerilir, bu da az-örnekli isteme yol açar. Bir sonraki bölümde, az-örnekli isteme örneğini gösteriyoruz. |