mirror of
https://github.com/dair-ai/Prompt-Engineering-Guide
synced 2024-11-18 03:25:39 +00:00
a5b200987f
Some .kr pages have the following errors, which should be fixed to improve the quality of the translation: 1. Spelling 2. Inconsistency (writing style, terminology) 3. Punctuation
12 lines
1.5 KiB
Plaintext
12 lines
1.5 KiB
Plaintext
# LLM 설정
|
|
|
|
프롬프트를 사용할 때, API를 사용하거나 직접 대규모언어모델(LLM)과 상호 작용 할 수 있습니다. 몇 가지 파라미터를 설정하여 프롬프트에서 여러 가지 결과를 얻을 수 있습니다.
|
|
|
|
**temperature** - 요컨대, `temperature` 값이 낮을수록 항상 가장 확률이 높은 토큰(말뭉치의 최소 단위)이 선택되기 때문에 더 결정론적인 결과를 낳습니다. temperature 값을 높였을 때 모델이 선택하는 토큰의 무작위성이 증가하여 보다 다양하고 창조적인 결과를 촉진합니다. 이는 다른 가능한 토큰의 가중치를 증가시키는 것과 같습니다. 애플리케이션의 경우, 사실을 기반으로 하는 질의응답과 같은 작업에는 낮은 temperature 값을 사용하여 보다 사실적이고 간결한 응답을 얻을 수 있습니다. 시를 생성하는 등 다른 창의적인 작업의 경우에는 temperature 값을 높이는 것이 도움이 될 수 있습니다.
|
|
|
|
**top_p** - 마찬가지로, temperature를 활용하는 핵 샘플링 기법인 `top_p`를 사용하면 모델이 응답을 생성하는 결정성을 제어할 수 있습니다. 정확하고 사실적인 답변을 원한다면 이를 낮게 유지합니다. 더 다양한 반응을 원한다면 더 높은 값으로 증가시킵니다.
|
|
|
|
일반적인 권장 사항은 둘 중 하나만 변경하는 것입니다.
|
|
|
|
몇 가지 기본적인 예시를 살펴보기에 앞서, 사용하는 LLM 버전에 따라 결과가 상이할 수 있음을 알립니다.
|