Prompt-Engineering-Guide/pages/risks/biases.ru.mdx
2023-06-05 17:16:47 +03:00

97 lines
5.0 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Предубеждения
Большие языковые модели (LLM) могут создавать проблематичные генерации, которые потенциально могут быть вредными и проявлять предубеждения, что может снизить производительность модели на последующих задачах. Некоторые из этих предубеждений могут быть смягчены с помощью эффективных стратегий промптинга, но могут потребовать более продвинутых решений, таких как модерация и фильтрация.
### Распределение примеров
Влияет ли распределение примеров на производительность модели или вызывает предубеждения модели каким-либо образом при выполнении обучения с малым количеством примеров? Мы можем провести простой тест здесь.
*Промпт:*
```
Q: I just got the best news ever!
A: Positive
Q: We just got a raise at work!
A: Positive
Q: I'm so proud of what I accomplished today.
A: Positive
Q: I'm having the best day ever!
A: Positive
Q: I'm really looking forward to the weekend.
A: Positive
Q: I just got the best present ever!
A: Positive
Q: I'm so happy right now.
A: Positive
Q: I'm so blessed to have such an amazing family.
A: Positive
Q: The weather outside is so gloomy.
A: Negative
Q: I just got some terrible news.
A: Negative
Q: That left a sour taste.
A:
```
*Вывод:*
```
Negative
```
В приведенном выше примере, кажется, что распределение примеров не вызывает предубеждений у модели. Это хорошо. Давайте попробуем другой пример с более сложным текстом для классификации и посмотрим, как модель справится:
*Промпт:*
```
Q: The food here is delicious!
A: Positive
Q: I'm so tired of this coursework.
A: Negative
Q: I can't believe I failed the exam.
A: Negative
Q: I had a great day today!
A: Positive
Q: I hate this job.
A: Negative
Q: The service here is terrible.
A: Negative
Q: I'm so frustrated with my life.
A: Negative
Q: I never get a break.
A: Negative
Q: This meal tastes awful.
A: Negative
Q: I can't stand my boss.
A: Negative
Q: I feel something.
A:
```
*Вывод:*
```
Negative
```
Хотя последнее предложение является относительно субъективным, я изменил распределение и использовал 8 положительных примеров и 2 отрицательных примера, а затем снова использовал то же самое предложение. Угадайте, что ответила модель? Она ответила "Positive". Модель может иметь много знаний о классификации эмоциональной окраски, поэтому будет сложно заставить ее проявить предубеждение в этой задаче. Совет здесь - избегать смещения распределения и вместо этого предоставить более сбалансированное количество примеров для каждой метки. Для более сложных задач, в которых у модели нет много знаний, она, вероятно, будет иметь больше проблем.
### Порядок примеров
Влияет ли порядок примеров на производительность модели или вызывает предубеждения модели каким-либо образом при выполнении обучения с малым количеством примеров?
Вы можете попробовать использовать приведенные выше примеры и посмотреть, сможете ли вы добиться того, чтобы модель была предубеждена в отношении определенной метки, изменив порядок. Совет заключается в том, чтобы случайно упорядочивать примеры. Например, избегайте того, чтобы все положительные примеры были первыми, а отрицательные - последними. Эта проблема усугубляется, если распределение меток смещено. Всегда экспериментируйте много, чтобы снизить такой тип предубеждения.