Prompt-Engineering-Guide/pages/techniques/activeprompt.tr.mdx
2023-04-08 11:23:03 +03:00

12 lines
1.2 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Aktif-Bilgi İstemi
import { Callout, FileTree } from 'nextra-theme-docs'
import {Screenshot} from 'components/screenshot'
import ACTIVE from '../../img/active-prompt.png'
Düşünce zinciri (CoT) yöntemleri, sabit bir insan açıklamalı örnekler kümesine dayanır. Bununla ilgili sorun, örneklerin farklı görevler için en etkili örnekler olmayabilmesidir. Bunu ele almak için [Diao ve diğerleri, (2023)](https://arxiv.org/pdf/2302.12246.pdf) kısa süre önce, LLM'leri göreve özgü farklı örnek istemlere uyarlamak için Active-Prompt adlı yeni bir yönlendirme yaklaşımı önerdi ( insan tarafından tasarlanmış CoT muhakemesi ile açıklamalı).
Aşağıda yaklaşımın bir örneği verilmiştir. İlk adım, LLM'yi birkaç CoT örneği olsun ya da olmasın sorgulamaktır. Bir dizi eğitim sorusu için *k* olası cevaplar üretilir. *k* yanıtlarına (kullanılan uyuşmazlık) dayalı olarak bir belirsizlik ölçüsü hesaplanır. En belirsiz sorular, insanlar tarafından ek açıklama için seçilir. Yeni açıklamalı örnekler daha sonra her soruyu anlamak için kullanılır.
<Screenshot src={ACTIVE} alt="ACTIVE" />
Resim Kaynağı: [Diao et al., (2023)](https://arxiv.org/pdf/2302.12246.pdf)