Prompt-Engineering-Guide/pages/models/collection.ru.mdx
2023-06-04 20:43:31 +03:00

86 lines
14 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Коллекция LLM
import { Callout, FileTree } from 'nextra-theme-docs'
В данном разделе представлен сборник и краткое описание значимых и основополагающих моделей языковых моделей (LLM).
## Модели
| Model | Release Date | Size (B) | Checkpoints | Description |
| --- | --- | --- | --- | --- |
| [Falcon LLM](https://falconllm.tii.ae/) | May 2023 | 7, 40 | [Falcon-7B](https://huggingface.co/tiiuae), [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b) | Falcon LLM is a foundational large language model (LLM) with 40 billion parameters trained on one trillion tokens. TII has now released Falcon LLM a 40B model. |
| [PaLM 2](https://arxiv.org/abs/2305.10403) | May 2023 | - | - | A Language Model that has better multilingual and reasoning capabilities and is more compute-efficient than its predecessor PaLM. |
| [Med-PaLM 2](https://arxiv.org/abs/2305.09617v1) | May 2023 | - | - | Towards Expert-Level Medical Question Answering with Large Language Models |
| [Gorilla](https://arxiv.org/abs/2305.15334v1) | May 2023 | 7 | [Gorilla](https://github.com/ShishirPatil/gorilla) | Gorilla: Large Language Model Connected with Massive APIs |
| [RedPajama-INCITE](https://www.together.xyz/blog/redpajama-models-v1) | May 2023 | 3, 7 | [RedPajama-INCITE](https://huggingface.co/togethercomputer) | A family of models including base, instruction-tuned & chat models. |
| [LIMA](https://arxiv.org/abs/2305.11206v1) | May 2023 | 65 | - | A 65B parameter LLaMa language model fine-tuned with the standard supervised loss on only 1,000 carefully curated prompts and responses, without any reinforcement learning or human preference modeling. |
| [Replit Code](https://huggingface.co/replit) | May 2023 | 3 | [Replit Code](https://huggingface.co/replit) | replit-code-v1-3b model is a 2.7B LLM trained on 20 languages from the Stack Dedup v1.2 dataset. |
| [h2oGPT](https://github.com/h2oai/h2ogpt) | May 2023 | 12 | [h2oGPT](https://github.com/h2oai/h2ogpt) | h2oGPT is a large language model (LLM) fine-tuning framework and chatbot UI with document(s) question-answer capabilities. |
| [CodeGen2](https://arxiv.org/abs/2305.02309) | May 2023 | 1, 3, 7, 16 | [CodeGen2](https://github.com/salesforce/codegen2) | Code models for program synthesis. |
| [CodeT5 and CodeT5+](https://arxiv.org/abs/2305.07922) | May 2023 | 16 | [CodeT5](https://github.com/salesforce/codet5) | CodeT5 and CodeT5+ models for Code Understanding and Generation from Salesforce Research. |
| [StarCoder](https://huggingface.co/blog/starcoder) | May 2023 | 15 | [StarCoder](https://huggingface.co/bigcode/starcoder) | StarCoder: A State-of-the-Art LLM for Code |
| [MPT-7B](https://www.mosaicml.com/blog/mpt-7b) | May 2023 | 7 | [MPT-7B](https://github.com/mosaicml/llm-foundry#mpt) | MPT-7B is a GPT-style model, and the first in the MosaicML Foundation Series of models. |
| [DLite](https://medium.com/ai-squared/announcing-dlite-v2-lightweight-open-llms-that-can-run-anywhere-a852e5978c6e) | May 2023 | 0.124 - 1.5 | [DLite-v2-1.5B](https://huggingface.co/aisquared/dlite-v2-1_5b) | Lightweight instruction following models which exhibit ChatGPT-like interactivity. |
| [Dolly](https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm) | April 2023 | 3, 7, 12 | [Dolly](https://huggingface.co/databricks/dolly-v2-12b) | An instruction-following LLM, fine-tuned on a human-generated instruction dataset licensed for research and commercial use. |
| [StableLM](https://github.com/Stability-AI/StableLM#stablelm-alpha) | April 2023 | 3, 7 | [StableLM-Alpha](https://github.com/Stability-AI/StableLM#stablelm-alpha) | Stability AI's StableLM series of language models |
| [Pythia](https://arxiv.org/abs/2304.01373) | April 2023 | 0.070 - 12 | [Pythia](https://github.com/eleutherai/pythia) | A suite of 16 LLMs all trained on public data seen in the exact same order and ranging in size from 70M to 12B parameters. |
| [Open Assistant (Pythia Family)](https://open-assistant.io/) | March 2023 | 12 | [Open Assistant](https://huggingface.co/OpenAssistant) | OpenAssistant is a chat-based assistant that understands tasks, can interact with third-party systems, and retrieve information dynamically to do so. |
| [Cerebras-GPT](https://arxiv.org/abs/2304.03208) | March 2023 | 0.111 - 13 | [Cerebras-GPT](https://huggingface.co/cerebras) | Cerebras-GPT: Open Compute-Optimal Language Models Trained on the Cerebras Wafer-Scale Cluster |
| [BloombergGPT](https://arxiv.org/abs/2303.17564v1)| March 2023 | 50 | - | BloombergGPT: A Large Language Model for Finance|
| [PanGu-Σ](https://arxiv.org/abs/2303.10845v1) | March 2023 | 1085 | - | PanGu-Σ: Towards Trillion Parameter Language Model with Sparse Heterogeneous Computing |
| [GPT-4](https://arxiv.org/abs/2303.08774v3) | March 2023 | - | - | GPT-4 Technical Report |
| [LLaMA](https://arxiv.org/abs/2302.13971v1) | Feb 2023 | 7, 13, 33, 65 | [LLaMA](https://github.com/facebookresearch/llama) | LLaMA: Open and Efficient Foundation Language Models |
| [ChatGPT](https://openai.com/blog/chatgpt) | Nov 2022 | - | - | A model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests. |
| [Galactica](https://arxiv.org/abs/2211.09085v1) | Nov 2022 | 0.125 - 120 | [Galactica](https://huggingface.co/models?other=galactica) | Galactica: A Large Language Model for Science |
| [mT0](https://arxiv.org/abs/2211.01786v1) | Nov 2022 | 13 | [mT0-xxl](https://huggingface.co/bigscience/mt0-xxl) | Crosslingual Generalization through Multitask Finetuning |
| [BLOOM](https://arxiv.org/abs/2211.05100v3) | Nov 2022 | 176 | [BLOOM](https://huggingface.co/bigscience/bloom) | BLOOM: A 176B-Parameter Open-Access Multilingual Language Model |
| [U-PaLM](https://arxiv.org/abs/2210.11399v2) | Oct 2022 | 540 | - | Transcending Scaling Laws with 0.1% Extra Compute |
| [UL2](https://arxiv.org/abs/2205.05131v3) | Oct 2022 | 20 | [UL2, Flan-UL2](https://github.com/google-research/google-research/tree/master/ul2#checkpoints) | UL2: Unifying Language Learning Paradigms |
| [Sparrow](https://arxiv.org/abs/2209.14375) | Sep 2022 | 70 | - | Improving alignment of dialogue agents via targeted human judgements |
| [Flan-T5](https://arxiv.org/abs/2210.11416v5) | Oct 2022 | 11 | [Flan-T5-xxl](https://huggingface.co/google/flan-t5-xxl) | Scaling Instruction-Finetuned Language Models |
| [AlexaTM](https://arxiv.org/abs/2208.01448v2) | Aug 2022 | 20 | - | AlexaTM 20B: Few-Shot Learning Using a Large-Scale Multilingual Seq2Seq Model |
| [GLM-130B](https://arxiv.org/abs/2210.02414v1) | Oct 2022 | 130 | [GLM-130B](https://github.com/THUDM/GLM-130B) | GLM-130B: An Open Bilingual Pre-trained Model |
| [OPT-IML](https://arxiv.org/abs/2212.12017v3) | Dec 2022 | 30, 175 | [OPT-IML](https://github.com/facebookresearch/metaseq/tree/main/projects/OPT-IML#pretrained-model-weights) | OPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization |
| [OPT](https://arxiv.org/abs/2205.01068) | May 2022 | 175 | [OPT-13B](https://huggingface.co/facebook/opt-13b), [OPT-66B](https://huggingface.co/facebook/opt-66b) | OPT: Open Pre-trained Transformer Language Models |
| [PaLM](https://arxiv.org/abs/2204.02311v5) |April 2022| 540 | - | PaLM: Scaling Language Modeling with Pathways |
| [Tk-Instruct](https://arxiv.org/abs/2204.07705v3) | April 2022 | 11 | [Tk-Instruct-11B](https://huggingface.co/allenai/tk-instruct-11b-def) | Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks |
| [GPT-NeoX-20B](https://arxiv.org/abs/2204.06745v1) | April 2022 | 20 | [GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b) | GPT-NeoX-20B: An Open-Source Autoregressive Language Model |
| [Chinchilla](https://arxiv.org/abs/2203.15556) | Mar 2022 | 70 | - | Shows that for a compute budget, the best performances are not achieved by the largest models but by smaller models trained on more data. |
| [InstructGPT](https://arxiv.org/abs/2203.02155v1) | Mar 2022 | 175 | - | Training language models to follow instructions with human feedback |
| [CodeGen](https://arxiv.org/abs/2203.13474v5) | Mar 2022 | 0.350 - 16 | [CodeGen](https://huggingface.co/models?search=salesforce+codegen) | CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis |
| [AlphaCode](https://arxiv.org/abs/2203.07814v1) | Feb 2022 | 41 | - | Competition-Level Code Generation with AlphaCode |
| [MT-NLG](https://arxiv.org/abs/2201.11990v3) | Jan 2022 | 530 | - | Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model|
| [LaMDA](https://arxiv.org/abs/2201.08239v3) | Jan 2022 | 137 | - | LaMDA: Language Models for Dialog Applications |
| [GLaM](https://arxiv.org/abs/2112.06905) | Dec 2021 | 1200 | - | GLaM: Efficient Scaling of Language Models with Mixture-of-Experts |
| [Gopher](https://arxiv.org/abs/2112.11446v2) | Dec 2021 | 280 | - | Scaling Language Models: Methods, Analysis & Insights from Training Gopher |
| [WebGPT](https://arxiv.org/abs/2112.09332v3) | Dec 2021 | 175 | - | WebGPT: Browser-assisted question-answering with human feedback |
| [Yuan 1.0](https://arxiv.org/abs/2110.04725v2) | Oct 2021| 245 | - | Yuan 1.0: Large-Scale Pre-trained Language Model in Zero-Shot and Few-Shot Learning |
| [T0](https://arxiv.org/abs/2110.08207) | Oct 2021 | 11 | [T0](https://huggingface.co/bigscience/T0) | Multitask Prompted Training Enables Zero-Shot Task Generalization |
| [FLAN](https://arxiv.org/abs/2109.01652v5) | Sep 2021 | 137 | - | Finetuned Language Models Are Zero-Shot Learners |
| [HyperCLOVA](https://arxiv.org/abs/2109.04650) | Sep 2021 | 82 | - | What Changes Can Large-scale Language Models Bring? Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers |
| [ERNIE 3.0 Titan](https://arxiv.org/abs/2112.12731v1) | July 2021 | 10 | - | ERNIE 3.0 Titan: Exploring Larger-scale Knowledge Enhanced Pre-training for Language Understanding and Generation |
| [Jurassic-1](https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf) | Aug 2021 | 178 | - | Jurassic-1: Technical Details and Evaluation |
| [ERNIE 3.0](https://arxiv.org/abs/2107.02137v1) | July 2021 | 10 | - | ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language Understanding and Generation|
| [Codex](https://arxiv.org/abs/2107.03374v2) | July 2021 | 12 | - | Evaluating Large Language Models Trained on Code |
| [GPT-J-6B](https://arankomatsuzaki.wordpress.com/2021/06/04/gpt-j/) | June 2021 | 6 | [GPT-J-6B](https://github.com/kingoflolz/mesh-transformer-jax/#gpt-j-6b) | A 6 billion parameter, autoregressive text generation model trained on The Pile. |
| [CPM-2](https://arxiv.org/abs/2106.10715v3) | Jun 2021 | 198 | [CPM](https://github.com/TsinghuaAI/CPM) | CPM-2: Large-scale Cost-effective Pre-trained Language Models |
| [PanGu-α](https://arxiv.org/abs/2104.12369v1) | April 2021 | 13 | [PanGu-α](https://gitee.com/mindspore/models/tree/master/official/nlp/Pangu_alpha#download-the-checkpoint) | PanGu-α: Large-scale Autoregressive Pretrained Chinese Language Models with Auto-parallel Computation |
| [mT5](https://arxiv.org/abs/2010.11934v3) | Oct 2020 | 13 | [mT5](https://github.com/google-research/multilingual-t5#released-model-checkpoints) | mT5: A massively multilingual pre-trained text-to-text transformer |
| [BART](https://arxiv.org/abs/1910.13461) | Jul 2020 | - | [BART](https://github.com/facebookresearch/fairseq) | Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension |
| [GShard](https://arxiv.org/abs/2006.16668v1) | Jun 2020 | 600| -| GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding |
| [GPT-3](https://arxiv.org/abs/2005.14165) | May 2020 | 175 | - | Language Models are Few-Shot Learners |
| [CTRL](https://arxiv.org/abs/1909.05858) | Sep 2019 | 1.63 | [CTRL](https://github.com/salesforce/ctrl) | CTRL: A Conditional Transformer Language Model for Controllable Generation |
| [ALBERT](https://arxiv.org/abs/1909.11942) | Sep 2019 | 0.235 | [ALBERT](https://github.com/google-research/ALBERT) | A Lite BERT for Self-supervised Learning of Language Representations |
| [XLNet](https://arxiv.org/abs/1906.08237) | Jun 2019 | - | [XLNet](https://github.com/zihangdai/xlnet#released-models) | Generalized Autoregressive Pretraining for Language Understanding and Generation |
| [T5](https://arxiv.org/abs/1910.10683) | Oct 2019 | 0.06 - 11 | [Flan-T5](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints) | Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer |
| [GPT-2](https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf) | Nov 2019 | 1.5 | [GPT-2](https://github.com/openai/gpt-2) | Language Models are Unsupervised Multitask Learners |
| [RoBERTa](https://arxiv.org/abs/1907.11692) | July 2019 | 0.125 - 0.355 | [RoBERTa](https://github.com/facebookresearch/fairseq/tree/main/examples/roberta) | A Robustly Optimized BERT Pretraining Approach |
| [BERT](https://arxiv.org/abs/1810.04805)| Oct 2018 | - | [BERT](https://github.com/google-research/bert) | Bidirectional Encoder Representations from Transformers |
| [GPT](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf) | June 2018 | - | [GPT](https://github.com/openai/finetune-transformer-lm) | Improving Language Understanding by Generative Pre-Training |
<Callout emoji="⚠️">
Данный раздел находится в стадии разработки.
</Callout>
Данные для этого раздела взяты из [Papers with Code](https://paperswithcode.com/methods/category/language-models) и из недавних работ [Zhao et al. (2023)](https://arxiv.org/pdf/2303.18223.pdf).