# Prompt Engineering Guide This guide contains a set of papers, learning guides, and tools related to prompt engineering. It includes several materials, guides, examples, papers, and more. The repo is intended to be used as a research and educational reference for practitioners and developers. **📣 Full lecture + notebook + exercises on the ~15th of Feb** (announcement will happen on [Twitter](https://twitter.com/dair_ai)) **📣 [Join our Discord](https://discord.gg/SKgkVT8BGJ) to discuss more about prompt engineering** ## Table of Contents - [Papers](#papers) - [Tools & Libraries](#tools--libraries) - [Datasets](#datasets) - [Blog, Guides, Tutorials and Other Readings](#blog-guides-tutorials-and-other-readings) ## Papers - Surveys / Overviews: - [A Survey for In-context Learning](https://arxiv.org/abs/2301.00234) (Dec 2022) - [Emergent Abilities of Large Language Models](https://arxiv.org/abs/2206.07682) (Jun 2022) - [A Taxonomy of Prompt Modifiers for Text-To-Image Generation](https://arxiv.org/abs/2204.13988) (Apr 2022) - [Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing](https://arxiv.org/abs/2107.13586) (Jul 2021) - Approaches/Techniques: - [Progressive Prompts: Continual Learning for Language Models](https://arxiv.org/abs/2301.12314) (Jan 2023) - [Batch Prompting: Efficient Inference with LLM APIs](https://arxiv.org/abs/2301.08721) (Jan 2023) - [Successive Prompting for Decomposing Complex Questions](https://arxiv.org/abs/2212.04092) (Dec 2022) - [Structured Prompting: Scaling In-Context Learning to 1,000 Examples](https://arxiv.org/abs/2212.06713) (Dec 2022) - [Large Language Models Are Human-Level Prompt Engineers](https://arxiv.org/abs/2211.01910) (Nov 2022) - [Teaching Algorithmic Reasoning via In-context Learning](https://arxiv.org/abs/2211.09066) (Nov 2022) - [Ask Me Anything: A simple strategy for prompting language models](https://paperswithcode.com/paper/ask-me-anything-a-simple-strategy-for) (Oct 2022) - [Decomposed Prompting: A Modular Approach for Solving Complex Tasks](https://arxiv.org/abs/2210.02406) (Oct 2022) - [Promptagator: Few-shot Dense Retrieval From 8 Examples](https://arxiv.org/abs/2209.11755) (Sep 2022) - [Large Language Models are Zero-Shot Reasoners](https://arxiv.org/abs/2205.11916) (May 2022) - [The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning](https://arxiv.org/abs/2205.03401) (May 2022) - [A Taxonomy of Prompt Modifiers for Text-To-Image Generation](https://arxiv.org/abs/2204.13988) (Apr 2022) - [PromptChainer: Chaining Large Language Model Prompts through Visual Programming](https://arxiv.org/abs/2203.06566) (Mar 2022) - [Self-Consistency Improves Chain of Thought Reasoning in Language Models](https://arxiv.org/abs/2203.11171) (March 2022) - [Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?](https://arxiv.org/abs/2202.12837) (Feb 2022) - [Chain of Thought Prompting Elicits Reasoning in Large Language Models](https://arxiv.org/abs/2201.11903) (Jan 2022) - [Show Your Work: Scratchpads for Intermediate Computation with Language Models](https://arxiv.org/abs/2112.00114) (Nov 2021) - [Generated Knowledge Prompting for Commonsense Reasoning](https://arxiv.org/abs/2110.08387) (Oct 2021) - [Reframing Instructional Prompts to GPTk's Language](https://arxiv.org/abs/2109.07830) (Sep 2021) - [Making Pre-trained Language Models Better Few-shot Learners](https://aclanthology.org/2021.acl-long.295/) (Aug 2021) - [Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot Prompt Order Sensitivity](https://arxiv.org/abs/2104.08786) (April 2021) - [BERTese: Learning to Speak to BERT](https://aclanthology.org/2021.eacl-main.316/) (April 2021) - [The Power of Scale for Parameter-Efficient Prompt Tuning](https://arxiv.org/abs/2104.08691) (April 2021) - [Prompt Programming for Large Language Models: Beyond the Few-Shot Paradigm](https://arxiv.org/abs/2102.07350) (Feb 2021) - [Calibrate Before Use: Improving Few-Shot Performance of Language Models](https://arxiv.org/abs/2102.09690) (Feb 2021) - [Prefix-Tuning: Optimizing Continuous Prompts for Generation](https://arxiv.org/abs/2101.00190) (Jan 2021) - [AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts](https://arxiv.org/abs/2010.15980) (Oct 2020) - [Language Models are Few-Shot Learners](https://arxiv.org/abs/2005.14165) (May 2020) - [How Can We Know What Language Models Know?](https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00324/96460/How-Can-We-Know-What-Language-Models-Know) (July 2020) - Applications: - [Legal Prompt Engineering for Multilingual Legal Judgement Prediction](https://arxiv.org/abs/2212.02199) (Dec 2022) - [Investigating Prompt Engineering in Diffusion Models](https://arxiv.org/abs/2211.15462) (Nov 2022) - [Conversing with Copilot: Exploring Prompt Engineering for Solving CS1 Problems Using Natural Language](https://arxiv.org/abs/2210.15157) (Oct 2022) - [Piloting Copilot and Codex: Hot Temperature, Cold Prompts, or Black Magic?](https://arxiv.org/abs/2210.14699) (Oct 2022) - [Plot Writing From Scratch Pre-Trained Language Models](https://aclanthology.org/2022.inlg-main.5/) (July 2022) - Collections: - [Papers with Code](https://paperswithcode.com/task/prompt-engineering) - [Prompt Papers](https://github.com/thunlp/PromptPapers#papers) ## Tools & Libraries - [OpenAI Playground](https://beta.openai.com/playground) - [GPTTools](https://gpttools.com/comparisontool) - [LangChain](https://github.com/hwchase17/langchain) - [ThoughtSource](https://github.com/OpenBioLink/ThoughtSource) - [EveryPrompt](https://www.everyprompt.com/) - [DUST](https://dust.tt/) - [Dyno](https://trydyno.com/) - [Metaprompt](https://metaprompt.vercel.app/?task=gpt) - [Prompts.ai](https://github.com/sevazhidkov/prompts-ai) - [Lexica](https://lexica.art/) - [Scale SpellBook](https://scale.com/spellbook) - [Interactive Composition Explorer](https://github.com/oughtinc/ice) - [LearnGPT](https://www.learngpt.com/) - [Promptable](https://promptable.ai/) - [GPT Index](https://github.com/jerryjliu/gpt_index) - [Prompt Base](https://promptbase.com/) - [Playground](https://playgroundai.com/) - [OpenPrompt](https://github.com/thunlp/OpenPrompt) - [Visual Prompt Builder](https://tools.saxifrage.xyz/prompt) - [Prompt Generator for OpenAI's DALL-E 2](http://dalle2-prompt-generator.s3-website-us-west-2.amazonaws.com/) - [AI Test Kitchen](https://aitestkitchen.withgoogle.com/) - [betterprompt](https://github.com/krrishdholakia/betterprompt) - [Prompt Engine](https://github.com/microsoft/prompt-engine) - [PromptSource](https://github.com/bigscience-workshop/promptsource) - [sharegpt](https://sharegpt.com/) - [DreamStudio](https://beta.dreamstudio.ai/) - [PromptInject](https://github.com/agencyenterprise/PromptInject) ## Datasets - [PartiPrompts](https://parti.research.google/) - [Real Toxicity Prompts](https://allenai.org/data/real-toxicity-prompts) - [DiffusionDB](https://github.com/poloclub/diffusiondb) - [P3 - Public Pool of Prompts](https://huggingface.co/datasets/bigscience/P3) - [WritingPrompts](WritingPrompts) - [Midjourney Prompts](https://huggingface.co/datasets/succinctly/midjourney-prompts) - [Awesome ChatGPT Prompts](https://huggingface.co/datasets/fka/awesome-chatgpt-prompts) - [Stable Diffusion Dataset](https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts) - [Anthropic's Red Team dataset](https://github.com/anthropics/hh-rlhf/tree/master/red-team-attempts), [(paper)](https://arxiv.org/abs/2209.07858) ## Blog, Guides, Tutorials and Other Readings - [Pretrain, Prompt, Predict - A New Paradigm for NLP](http://pretrain.nlpedia.ai/) - [Prompt Engineering 101 - Introduction and resources](https://www.linkedin.com/pulse/prompt-engineering-101-introduction-resources-amatriain/) - [Prompt Engineering by co:here](https://docs.cohere.ai/docs/prompt-engineering) - [Generative AI with Cohere: Part 1 - Model Prompting](https://txt.cohere.ai/generative-ai-part-1/) - [Prompt Engineering by Microsoft](https://microsoft.github.io/prompt-engineering/) - [Best practices for prompt engineering with OpenAI API](https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-openai-api) - [Start with an Instruction](https://beta.openai.com/docs/quickstart/start-with-an-instruction) - [CMU Advanced NLP 2022: Prompting](https://youtube.com/watch?v=5ef83Wljm-M&feature=shares) - [Prompt Engineering 101: Autocomplete, Zero-shot, One-shot, and Few-shot prompting](https://youtube.com/watch?v=v2gD8BHOaX4&feature=shares) - [Prompt engineering davinci-003 on our own docs for automated support (Part I)](https://www.patterns.app/blog/2022/12/21/finetune-llm-tech-support/) - [DALLE Prompt Book](https://dallery.gallery/the-dalle-2-prompt-book/) - [DALL·E 2 Prompt Engineering Guide](https://docs.google.com/document/d/11WlzjBT0xRpQhP9tFMtxzd0q6ANIdHPUBkMV-YB043U/edit#) - [Prompt injection attacks against GPT-3](https://simonwillison.net/2022/Sep/12/prompt-injection/) - [Language Models and Prompt Engineering: Systematic Survey of Prompting Methods in NLP](https://youtube.com/watch?v=OsbUfL8w-mo&feature=shares) - [A Complete Introduction to Prompt Engineering for Large Language Models](https://www.mihaileric.com/posts/a-complete-introduction-to-prompt-engineering/) - [Learn Prompting](https://learnprompting.org/) - [3 Principles for prompt engineering with GPT-3](https://www.linkedin.com/pulse/3-principles-prompt-engineering-gpt-3-ben-whately/) - [Extrapolating to Unnatural Language Processing with GPT-3's In-context Learning: The Good, the Bad, and the Mysterious](http://ai.stanford.edu/blog/in-context-learning/) - [Prompt Engineering Topic by GitHub](https://github.com/topics/prompt-engineering) - [Prompt Engineering Template](https://docs.google.com/spreadsheets/d/1-snKDn38-KypoYCk9XLPg799bHcNFSBAVu2HVvFEAkA/edit#gid=0) - [Awesome ChatGPT Prompts](https://github.com/f/awesome-chatgpt-prompts) - [Prompt Engineering: From Words to Art](https://www.saxifrage.xyz/post/prompt-engineering) - [NLP for Text-to-Image Generators: Prompt Analysis](https://heartbeat.comet.ml/nlp-for-text-to-image-generators-prompt-analysis-part-1-5076a44d8365) - [Mysteries of mode collapse](https://www.lesswrong.com/posts/t9svvNPNmFf5Qa3TA/mysteries-of-mode-collapse) - [GPT3 and Prompts: A quick primer](https://buildspace.so/notes/intro-to-gpt3-prompts) - [Prompt Engineering in GPT-3](https://www.analyticsvidhya.com/blog/2022/05/prompt-engineering-in-gpt-3/) - [Talking to machines: prompt engineering & injection](https://artifact-research.com/artificial-intelligence/talking-to-machines-prompt-engineering-injection/) - [A beginner-friendly guide to generative language models - LaMBDA guide](https://aitestkitchen.withgoogle.com/how-lamda-works) - [Giving GPT-3 a Turing Test](https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html) - [Prompts as Programming by Gwern](https://www.gwern.net/GPT-3#prompts-as-programming) - [AI Content Generation](https://www.jonstokes.com/p/ai-content-generation-part-1-machine) - [How to Draw Anything](https://andys.page/posts/how-to-draw/) - [How to write good prompts](https://andymatuschak.org/prompts/) - [Prompting Methods with Language Models and Their Applications to Weak Supervision](https://snorkel.ai/prompting-methods-with-language-models-nlp/) - [How to get images that don't suck](https://www.reddit.com/r/StableDiffusion/comments/x41n87/how_to_get_images_that_dont_suck_a/) - [Best 100+ Stable Diffusion Prompts](https://mpost.io/best-100-stable-diffusion-prompts-the-most-beautiful-ai-text-to-image-prompts/) - [Notes for Prompt Engineering by sw-yx](https://github.com/sw-yx/ai-notes) - [Prompt Engineering Guide: How to Engineer the Perfect Prompts](https://richardbatt.co.uk/prompt-engineering-guide-how-to-engineer-the-perfect-prompts/) - [A Generic Framework for ChatGPT Prompt Engineering](https://medium.com/@thorbjoern.heise/a-generic-framework-for-chatgpt-prompt-engineering-7097f6513a0b) - [Methods of prompt programming](https://generative.ink/posts/methods-of-prompt-programming/) - [Prompt Engineering 101](https://humanloop.com/blog/prompt-engineering-101) - [the Book - Fed Honeypot](https://fedhoneypot.notion.site/25fdbdb69e9e44c6877d79e18336fe05?v=1d2bf4143680451986fd2836a04afbf4) - [Curtis64's set of prompt gists](https://gist.github.com/Curtis-64) # Lecture + Tutorial Full tutorial and lecture coming soon! --- Feel free to open a PR if you think something is missing here. Always welcome feedback and suggestions. Join our [Discord](https://discord.gg/SKgkVT8BGJ)