Update zeroshot.it.mdx

This commit is contained in:
Giornale di Sistema 2024-01-13 12:27:52 +01:00 committed by GitHub
parent a5fa7a2dfc
commit de7b07a8bd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,11 +1,12 @@
# Prompt Zero-Shot
Oggi i LLM, addestrati su grandi quantità di dati e regolati per seguire le istruzioni, sono in grado di eseguire compiti a colpo zero. Nella sezione precedente abbiamo provato alcuni esempi a colpo zero. Ecco uno degli esempi utilizzati:
I grandi LLM di oggi, come GPT-3, sono regolati per seguire le istruzioni e sono addestrati su grandi quantità di dati; quindi sono in grado di eseguire alcuni compiti "zero-shot".
Nella sezione precedente abbiamo provato alcuni esempi zero-shot. Ecco uno degli esempi utilizzati:
*Prompt:*
```
Classificare il testo in neutro, negativo o positivo.
Testo: Penso che le vacanze vadano bene.
Testo: Penso che le vacanze siano ok.
Sentimento:
```
@ -14,9 +15,9 @@ Sentimento:
Neutro
```
Si noti che nella richiesta di cui sopra non abbiamo fornito al modello alcun esempio: questa è la capacità di ripresa zero al lavoro.
Si noti che nel prompt non abbiamo fornito al modello alcun esempio di testo insieme alle relative classificazioni; l'LLM capisce già il "sentiment": si tratta delle capacità zero-shot al lavoro.
La sintonizzazione delle istruzioni ha dimostrato di migliorare l'apprendimento a colpo zero [Wei et al. (2022)](https://arxiv.org/pdf/2109.01652.pdf). La sintonizzazione delle istruzioni è essenzialmente il concetto di perfezionamento dei modelli su insiemi di dati descritti tramite istruzioni. Inoltre, [RLHF](https://arxiv.org/abs/1706.03741) (apprendimento per rinforzo dal feedback umano) è stato adottato per scalare la sintonizzazione delle istruzioni, in cui il modello viene allineato per adattarsi meglio alle preferenze umane. Questo recente sviluppo alimenta modelli come ChatGPT. Discuteremo tutti questi approcci e metodi nelle prossime sezioni.
La messa a punto delle istruzioni ha dimostrato di migliorare l'apprendimento zero-shot [Wei et al. (2022)](https://arxiv.org/pdf/2109.01652.pdf). La messa a punto delle istruzioni è essenzialmente il concetto di perfezionamento dei modelli su insiemi di dati descritti tramite istruzioni. Inoltre, l'[RLHF](https://arxiv.org/abs/1706.03741) (reinforcement learning from human feedback, apprendimento per rinforzo dal feedback umano) è stato adottato per scalare la sintonizzazione delle istruzioni, in cui il modello viene allineato per adattarsi meglio alle preferenze umane. Questo recente sviluppo alimenta modelli come ChatGPT. Discuteremo tutti questi approcci e metodi nelle prossime sezioni.
Quando zero-shot non funziona, si raccomanda di fornire dimostrazioni o esempi nel prompt, il che porta al few-shot prompt. Nella prossima sezione, dimostreremo il few-shot prompt.