diff --git a/pages/introduction/settings.ru.mdx b/pages/introduction/settings.ru.mdx index 35fadf9..04bad9e 100644 --- a/pages/introduction/settings.ru.mdx +++ b/pages/introduction/settings.ru.mdx @@ -4,7 +4,7 @@ **Температура** — Вкратце, чем ниже значение `температуры`, тем более детерминированными будут результаты в смысле того, что будет выбрано самое вероятное следующий токен. Увеличение температуры может привести к большей случайности, что способствует более разнообразным или творческим результатам. Вы фактически увеличиваете веса других возможных токенов. В плане применения, для задач, связанных с ответами на вопросы на основе фактов, рекомендуется использовать более низкое значение температуры, чтобы стимулировать более точные и краткие ответы. Для генерации стихов или других творческих задач может быть полезно увеличить значение температуры. -**Top_p** — Аналогично, с помощью `top_p`, техники сэмплирования с использованием температуры, называемой сэмплированием ядра, вы можете контролировать, насколько детерминированной будет модель в генерации ответа. Если вы ищете точные и фактические ответы, установите низкое значение. Если вы ищете более разнообразные ответы, увеличьте значение. +**Top_p** — Аналогично, с помощью `top_p`, техники сэмплирования с использованием температуры, называемой сэмплированием ядра, вы можете контролировать, насколько детерминированной будет модель в генерации ответа. Если вы ищете точные и фактические ответы, установите низкое значение. Если вы ищете более разнообразные ответы, увеличьте значение. Общая рекомендация заключается в том, чтобы изменять только один параметр, а не оба. **Максимальная длина** — Вы можете управлять количеством токенов, генерируемых моделью, регулируя максимальную длину. Указание максимальной длины помогает предотвратить длинные или ненужные ответы и контролировать затраты. @@ -16,6 +16,4 @@ Как и в случае с `температурой` и `top_p`, рекомендуется — изменить штраф за частоту или присутствие, но не то и другое одновременно. -Общая рекомендация заключается в том, чтобы изменять только один параметр, а не оба. - Перед тем, как перейти к некоторым простым примерам, имейте в виду, что ваши результаты могут отличаться в зависимости от версии LLM, которую вы используете.