mirror of
https://github.com/dair-ai/Prompt-Engineering-Guide
synced 2024-11-18 03:25:39 +00:00
Fix the expired LangChain link.
This commit is contained in:
parent
b11893d87e
commit
2b2c230aa1
@ -22,4 +22,4 @@ This shows the potential of RAG as a viable option for enhancing outputs of lang
|
||||
|
||||
More recently, these retriever-based approaches have become more popular and are combined with popular LLMs like ChatGPT to improve capabilities and factual consistency.
|
||||
|
||||
You can find a [simple example of how to use retrievers and LLMs for question answering with sources](https://python.langchain.com/en/latest/modules/chains/index_examples/vector_db_qa_with_sources.html) from the LangChain documentation.
|
||||
You can find a [simple example of how to use retrievers and LLMs for question answering with sources](https://python.langchain.com/docs/use_cases/question_answering/how_to/vector_db_qa) from the LangChain documentation.
|
@ -22,4 +22,4 @@ Questo mostra il potenziale di RAG come opzione valida per migliorare gli output
|
||||
|
||||
Più recentemente, questi approcci basati su recupero sono diventati più popolari e sono combinati con LLM popolari come ChatGPT per migliorare le capacità e la coerenza fattuale.
|
||||
|
||||
Puoi trovare un [esempio semplice di come usare i recuperatori e i LLM per rispondere alle domande con le fonti](https://python.langchain.com/en/latest/modules/chains/index_examples/vector_db_qa_with_sources.html) dalla documentazione di LangChain.
|
||||
Puoi trovare un [esempio semplice di come usare i recuperatori e i LLM per rispondere alle domande con le fonti](https://python.langchain.com/docs/use_cases/question_answering/how_to/vector_db_qa) dalla documentazione di LangChain.
|
||||
|
@ -22,4 +22,4 @@ RAG 在 [Natural Questions](https://ai.google.com/research/NaturalQuestions)、[
|
||||
|
||||
最近,基于检索器的方法越来越流行,经常与 ChatGPT 等流行 LLM 结合使用来提高其能力和事实一致性。
|
||||
|
||||
LangChain 文档中可以找到[一个使用检索器和 LLM 回答问题并给出知识来源的简单例子](https://python.langchain.com/en/latest/modules/chains/index_examples/vector_db_qa_with_sources.html)。
|
||||
LangChain 文档中可以找到[一个使用检索器和 LLM 回答问题并给出知识来源的简单例子](https://python.langchain.com/docs/use_cases/question_answering/how_to/vector_db_qa)。
|
||||
|
Loading…
Reference in New Issue
Block a user