import { Callout, FileTree } from 'nextra-theme-docs'
<Callout emoji="⚠️">
Bu bölüm yoğun geliştirme aşamasındadır.
</Callout>
Bu bölüm, dikkate değer ve temel LLM'lerin bir koleksiyonunu ve özetini içerir. (Veriler [Papers with Code](https://paperswithcode.com/methods/category/language-models) ve [Zhao ve diğerleri (2023)] tarafından yapılan son çalışmadan alınmıştır.(https://arxiv.org/pdf/2303.18223.pdf).
## Modeller
| Model | Çıkış Tarihi | Açıklama |
| --- | --- | --- |
| [BERT](https://arxiv.org/abs/1810.04805)| 2018 | Bidirectional Encoder Representations from Transformers |
| [GPT](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf) | 2018 | Improving Language Understanding by Generative Pre-Training |
| [HyperCLOVA](https://arxiv.org/abs/2109.04650) | 2021 | What Changes Can Large-scale Language Models Bring? Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers |
| [Codex](https://arxiv.org/abs/2107.03374v2) |2021 |Evaluating Large Language Models Trained on Code |
| [ERNIE 3.0](https://arxiv.org/abs/2107.02137v1) | 2021 | ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language Understanding and Generation|
| [FLAN](https://arxiv.org/abs/2109.01652v5) | 2021 | Finetuned Language Models Are Zero-Shot Learners |
| [MT-NLG](https://arxiv.org/abs/2201.11990v3) | 2021 | Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model|
| [Yuan 1.0](https://arxiv.org/abs/2110.04725v2) | 2021| Yuan 1.0: Large-Scale Pre-trained Language Model in Zero-Shot and Few-Shot Learning |
| [WebGPT](https://arxiv.org/abs/2112.09332v3) | 2021 | WebGPT: Browser-assisted question-answering with human feedback |
| [Gopher](https://arxiv.org/abs/2112.11446v2) |2021 | Scaling Language Models: Methods, Analysis & Insights from Training Gopher |
| [ERNIE 3.0 Titan](https://arxiv.org/abs/2112.12731v1) |2021 | ERNIE 3.0 Titan: Exploring Larger-scale Knowledge Enhanced Pre-training for Language Understanding and Generation |
| [GLaM](https://arxiv.org/abs/2112.06905) | 2021 | GLaM: Efficient Scaling of Language Models with Mixture-of-Experts |
| [InstructGPT](https://arxiv.org/abs/2203.02155v1) | 2022 | Training language models to follow instructions with human feedback |
| [GPT-NeoX-20B](https://arxiv.org/abs/2204.06745v1) | 2022 | GPT-NeoX-20B: An Open-Source Autoregressive Language Model |
| [CodeGen](https://arxiv.org/abs/2203.13474v5) | 2022 | CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis |
| [Chinchilla](https://arxiv.org/abs/2203.15556) | 2022 | Shows that for a compute budget, the best performances are not achieved by the largest models but by smaller models trained on more data. |
| [Tk-Instruct](https://arxiv.org/abs/2204.07705v3) | 2022 | Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks |
| [Galactica](https://arxiv.org/abs/2211.09085v1) | 2022 | Galactica: A Large Language Model for Science |
| [OPT-IML](https://arxiv.org/abs/2212.12017v3) | 2022 | OPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization |
| [LLaMA](https://arxiv.org/abs/2302.13971v1) | 2023 | LLaMA: Open and Efficient Foundation Language Models |
| [BloombergGPT](https://arxiv.org/abs/2303.17564v1)| 2023 |BloombergGPT: A Large Language Model for Finance|
| [PaLM 2](https://ai.google/static/documents/palm2techreport.pdf) | 2023 | A Language Model that has better multilingual and reasoning capabilities and is more compute-efficient than its predecessor PaLM. |