[Clavié et al., 2023](https://arxiv.org/abs/2303.07142) fornisce un caso di studio sul prompt engineering applicato a un caso d'uso di classificazione di testi su media scala in un sistema di produzione. Utilizzando il compito di classificare se un lavoro è un vero "entry-level job", adatto a un neolaureato, o meno, hanno valutato una serie di tecniche di prompt engineering e riportano i loro risultati utilizzando GPT-3.5 (`gpt-3.5-turbo`).
Il lavoro mostra che LLMs supera tutti gli altri modelli testati, compresa una linea di base estremamente forte in DeBERTa-V3. Anche `gpt-3.5-turbo` supera sensibilmente le vecchie varianti di GPT3 in tutte le metriche chiave, ma richiede un ulteriore parsing dell'output poiché la sua capacità di attenersi a un modello sembra essere peggiore rispetto alle altre varianti.
I risultati principali del loro approccio prompt engineering sono i seguenti:
- Per compiti come questo, in cui non è richiesta alcuna conoscenza esperta, la richiesta di CoT a pochi colpi ha ottenuto risultati peggiori rispetto alla richiesta a zero colpi in tutti gli esperimenti.
- L'impatto del prompt sull'elaborazione del ragionamento corretto è enorme. Chiedendo semplicemente al modello di classificare un determinato lavoro si ottiene un punteggio F1 di 65,6, mentre il modello ingegneristico post-prompt raggiunge un punteggio F1 di 91,7.
- Il tentativo di forzare il modello ad attenersi a un modello abbassa le prestazioni in tutti i casi (questo comportamento scompare nei primi test con GPT-4, che sono posteriori al documento).
- Molte piccole modifiche hanno un impatto eccessivo sulle prestazioni.
- Le tabelle seguenti mostrano tutte le modifiche testate.
- La corretta impartizione delle istruzioni e la ripetizione dei punti chiave sembrano essere il principale fattore di performance.
- Una cosa semplice come dare un nome (umano) al modello e riferirsi ad esso come tale ha aumentato il punteggio F1 di 0,6 punti.