[Clavié et al., 2023](https://arxiv.org/abs/2303.07142) provide a case-study on prompt-engineering applied to a medium-scale text classification use-case in a production system. Using the task of classifying whether a job is a true "entry-level job", suitable for a recent graduate, or not, they evaluated a series of prompt engineering techniques and report their results using GPT-3.5 (`gpt-3.5-turbo`).
The work shows that LLMs outperforms all other models tested, including an extremely strong baseline in DeBERTa-V3. `gpt-3.5-turbo` also noticeably outperforms older GPT3 variants in all key metrics, but requires additional output parsing as its ability to stick to a template appears to be worse than the other variants.
The key findings of their prompt engineering approach are:
- For tasks such as this one, where no expert knowledge is required, Few-shot CoT prompting performed worse than Zero-shot prompting in all experiments.
- The impact of the prompt on eliciting the correct reasoning is massive. Simply asking the model to classify a given job results in an F1 score of 65.6, whereas the post-prompt engineering model achieves an F1 score of 91.7.
- Attempting to force the model to stick to a template lowers performance in all cases (this behaviour disappears in early testing with GPT-4, which are posterior to the paper).
- Many small modifications have an outsized impact on performance.