Prompt-Engineering-Guide/pages/applications/generating.pt.mdx

44 lines
1.4 KiB
Plaintext
Raw Normal View History

2023-04-04 19:22:25 +00:00
# Gerando dados
LLMs têm fortes capacidades para gerar texto coerente. O uso de estratégias de prompt eficazes pode orientar o modelo para produzir respostas melhores, consistentes e mais factuais. Os LLMs também podem ser especialmente úteis para gerar dados que são realmente úteis para executar todos os tipos de experimentos e avaliações. Por exemplo, podemos usá-lo para gerar amostras rápidas para um classificador de sentimento da seguinte forma:
*Incitar:*
```
Produza 10 exemplares para análise de sentimento. Os exemplos são categorizados como positivos ou negativos. Produza 2 exemplos negativos e 8 exemplos positivos. Use este formato para os exemplos:
P: <frase>
A: <sentimento>
```
*Saída:*
```
Q: Acabei de receber a melhor notícia de todas!
A: positivo
Q: Acabamos de receber um aumento no trabalho!
A: positivo
Q: Estou muito orgulhoso do que realizei hoje.
A: positivo
Q: Estou tendo o melhor dia de todos!
A: positivo
Q: Estou realmente ansioso pelo fim de semana.
A: positivo
Q: Acabei de receber o melhor presente de todos!
A: positivo
Q: Estou tão feliz agora.
A: positivo
Q: Sou tão abençoado por ter uma família tão incrível.
A: positivo
Q: O tempo lá fora está tão sombrio.
A: negativo
Q: Acabei de receber uma notícia terrível.
A: negativo
```
Isso é muito útil. Na verdade, usamos este exemplo para um teste diferente em outra seção dos guias.