mirror of
https://github.com/dair-ai/Prompt-Engineering-Guide
synced 2024-11-02 15:40:13 +00:00
12 lines
1.1 KiB
Plaintext
12 lines
1.1 KiB
Plaintext
|
# Aktiivikehote
|
||
|
|
||
|
import { Callout, FileTree } from 'nextra-theme-docs'
|
||
|
import {Screenshot} from 'components/screenshot'
|
||
|
import ACTIVE from '../../img/active-prompt.png'
|
||
|
|
||
|
Ajatusketjuun (CoT) perustuvat menetelmät perustuvat tiettyyn joukkoon ihmisten tekemiä esimerkkejä. Ongelmana on, että esimerkit eivät välttämättä ole tehokkaita erilaisissa tehtävissä. Tämän ongelman ratkaisemiseksi, [Diao ym., (2023)](https://arxiv.org/pdf/2302.12246.pdf) ehdottivat äskettäin uutta kehotetekniikkaa nimeltä Aktiiviohje (Active-Prompt), joka mukauttaa LLM:ää eri tehtävakohtaisten esimerkkiohjeiden mukaan (ihmisten suodattaman CoT-päättelyn avulla).
|
||
|
|
||
|
Alla on esitys lähestymistavasta. Ensimmäinen vaihe on kysyä LLM:ltä joko muutamilla CoT-esimerkeillä tai ilman niitä. *k* mahdollista vastausta tuotetaan joukolle koulutuskysymyksiä. Epävarmuusmääre lasketaan perustuen *k* vastaukseen. Epävarmimmat kysymykset valitaan ihmisten annotointia varten. Uusia annotoituja esimerkkejä käytetään sitten kunkin kysymyksen päättelemiseen.
|
||
|
|
||
|
<Screenshot src={ACTIVE} alt="ACTIVE" />
|
||
|
Kuvan lähde: [Diao ym., (2023)](https://arxiv.org/pdf/2302.12246.pdf)
|