Prompt-Engineering-Guide/pages/techniques/tot.zh.mdx

30 lines
2.2 KiB
Plaintext
Raw Normal View History

2023-06-17 06:58:55 +00:00
# 思维树 (ToT)
2023-06-05 02:19:59 +00:00
2023-06-17 06:58:55 +00:00
import { Callout, FileTree } from 'nextra-theme-docs'
import {Screenshot} from 'components/screenshot'
import TOT from '../../img/TOT.png'
import TOT2 from '../../img/TOT2.png'
import TOT3 from '../../img/TOT3.png'
对于需要探索或预判战略的复杂任务来说,传统或简单的提示技巧是不够的。最近,[Yao et el. (2023)](https://arxiv.org/abs/2305.10601) 提出了思维树Tree of ThoughtsToT框架该框架基于思维链提示进行了总结引导语言模型探索把思维作为中间步骤来解决通用问题。
ToT 维护着一棵思维树思维由连贯的语言序列表示这个序列就是解决问题的中间步骤。使用这种方法LM 能够自己对严谨推理过程的中间思维进行评估。LM 将生成及评估思维的能力与搜索算法(如广度优先搜索和深度优先搜索)相结合,在系统性探索思维的时候可以向前验证和回溯。
ToT 框架原理如下:
<Screenshot src={TOT} alt="TOT" />
图片援引自:[Yao et el. (2023)](https://arxiv.org/abs/2305.10601)
ToT 需要针对不同的任务定义思维/步骤的数量以及每步的候选项数量。例如,论文中的“算 24 游戏”是一种数学推理任务,需要分成 3 个思维步骤每一步都需要一个中间方程。而每个步骤保留最优的best 5 个候选项。
ToT 完成算 24 的游戏任务要执行宽度优先搜索BFS每步思维的候选项都要求 LM 给出能否得到 24 的评估“sure/maybe/impossible”一定能/可能/不可能) 。作者讲到“目的是得到经过少量向前尝试就可以验证正确sure的局部解基于太大/太小的常识消除那些不可能impossible的局部解其余的局部解作为maybe保留。”每步思维都要抽样得到 3 个评估结果。整个过程如下图所示:
<Screenshot src={TOT2} alt="TOT2" />
图片援引自:[Yao et el. (2023)](https://arxiv.org/abs/2305.10601)
从下图中报告的结果来看ToT 的表现大大超过了其他提示方法:
<Screenshot src={TOT3} alt="TOT3" />
图片援引自:[Yao et el. (2023)](https://arxiv.org/abs/2305.10601)
代码示例在[这里](https://github.com/princeton-nlp/tree-of-thought-llm)。