The following are the latest papers (sorted by release date) on prompt engineering for large language models (LLMs). We update the list of papers on a daily/weekly basis.
- [Augmented Language Models: a Survey](https://arxiv.org/abs/2302.07842) (Feb 2023)
- [A Survey for In-context Learning](https://arxiv.org/abs/2301.00234) (Dec 2022)
- [Towards Reasoning in Large Language Models: A Survey](https://arxiv.org/abs/2212.10403) (Dec 2022)
- [Reasoning with Language Model Prompting: A Survey](https://arxiv.org/abs/2212.09597) (Dec 2022)
- [Emergent Abilities of Large Language Models](https://arxiv.org/abs/2206.07682) (Jun 2022)
- [A Taxonomy of Prompt Modifiers for Text-To-Image Generation](https://arxiv.org/abs/2204.13988) (Apr 2022)
- [Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing](https://arxiv.org/abs/2107.13586) (Jul 2021)
- [Self-Critique Prompting with Large Language Models for Inductive Instructions](https://arxiv.org/abs/2305.13733) (May 2023)
- [Better Zero-Shot Reasoning with Self-Adaptive Prompting](https://arxiv.org/abs/2305.14106) (May 2023)
- [Hierarchical Prompting Assists Large Language Model on Web Navigation](https://arxiv.org/abs/2305.14257) (May 2023)
- [Interactive Natural Language Processing](https://arxiv.org/abs/2305.13246) (May 2023)
- [Can We Edit Factual Knowledge by In-Context Learning?](https://arxiv.org/abs/2305.12740) (May 2023)
- [In-Context Learning of Large Language Models Explained as Kernel Regression](https://arxiv.org/abs/2305.12766) (May 2023)
- [Meta-in-context learning in large language models](https://arxiv.org/abs/2305.12907) (May 2023)
- [Let's Sample Step by Step: Adaptive-Consistency for Efficient Reasoning with LLMs](https://arxiv.org/abs/2305.11860) (May 2023)
- [Post Hoc Explanations of Language Models Can Improve Language Models](https://arxiv.org/abs/2305.11426) (May 2023)
- [Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM Inference with Transferable Prompt](https://arxiv.org/abs/2305.11186) (May 2023)
- [TreePrompt: Learning to Compose Tree Prompts for Explainable Visual Grounding](https://arxiv.org/abs/2305.11497) (May 2023)
- [TELeR: A General Taxonomy of LLM Prompts for Benchmarking Complex Tasks](https://arxiv.org/abs/2305.11430) (May 2023)
- [Efficient Prompting via Dynamic In-Context Learning](https://arxiv.org/abs/2305.11170) (May 2023)
- [The Web Can Be Your Oyster for Improving Large Language Models](https://arxiv.org/abs/2305.10998) (May 2023)
- [Chain of Hindsight Aligns Language Models with Feedback](https://arxiv.org/abs/2302.02676) (Feb 2023)
- [Language Is Not All You Need: Aligning Perception with Language Models](https://arxiv.org/abs/2302.14045) (Feb 2023)
- [Automatic Prompt Augmentation and Selection with Chain-of-Thought from Labeled Data](https://arxiv.org/abs/2302.12822) (Feb 2023)
- [Active Prompting with Chain-of-Thought for Large Language Models](https://arxiv.org/abs/2302.12246) (Feb 2023)
- [More than you've asked for: A Comprehensive Analysis of Novel Prompt Injection Threats to Application-Integrated Large Language Models](https://arxiv.org/abs/2302.12173) (Feb 2023)
- [A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT](https://arxiv.org/abs/2302.11382) (Feb 2023)
- [Guiding Large Language Models via Directional Stimulus Prompting](https://arxiv.org/abs/2302.11520) (Feb 2023)
- [How Does In-Context Learning Help Prompt Tuning?](https://arxiv.org/abs/2302.11521) (Feb 2023)
- [Scalable Prompt Generation for Semi-supervised Learning with Language Models](https://arxiv.org/abs/2302.09236) (Feb 2023)
- [Bounding the Capabilities of Large Language Models in Open Text Generation with Prompt Constraints](https://arxiv.org/abs/2302.09185) (Feb 2023)
- [À-la-carte Prompt Tuning (APT): Combining Distinct Data Via Composable Prompting](https://arxiv.org/abs/2302.07994) (Feb 2023)
- [GraphPrompt: Unifying Pre-Training and Downstream Tasks for Graph Neural Networks](https://arxiv.org/abs/2302.08043) (Feb 2023)
- [The Capacity for Moral Self-Correction in Large Language Models](https://arxiv.org/abs/2302.07459) (Feb 2023)
- [SwitchPrompt: Learning Domain-Specific Gated Soft Prompts for Classification in Low-Resource Domains](https://arxiv.org/abs/2302.06868) (Feb 2023)
- [Evaluating the Robustness of Discrete Prompts](https://arxiv.org/abs/2302.05619) (Feb 2023)
- [Compositional Exemplars for In-context Learning](https://arxiv.org/abs/2302.05698) (Feb 2023)
- [Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery](https://arxiv.org/abs/2302.03668) (Feb 2023)
- [Multimodal Chain-of-Thought Reasoning in Language Models](https://arxiv.org/abs/2302.00923) (Feb 2023)
- [Large Language Models Can Be Easily Distracted by Irrelevant Context](https://arxiv.org/abs/2302.00093) (Feb 2023)
- [Synthetic Prompting: Generating Chain-of-Thought Demonstrations for Large Language Models](https://arxiv.org/abs/2302.00618) (Feb 2023)
- [Progressive Prompts: Continual Learning for Language Models](https://arxiv.org/abs/2301.12314) (Jan 2023)
- [Batch Prompting: Efficient Inference with LLM APIs](https://arxiv.org/abs/2301.08721) (Jan 2023)
- [Demonstrate-Search-Predict: Composing retrieval and language models for knowledge-intensive NLP](https://arxiv.org/abs/2212.14024) (Dec 2022)
- [On Second Thought, Let's Not Think Step by Step! Bias and Toxicity in Zero-Shot Reasoning](https://arxiv.org/abs/2212.08061) (Dec 2022)
- [Constitutional AI: Harmlessness from AI Feedback](https://arxiv.org/abs/2212.08073) (Dec 2022)
- [Successive Prompting for Decomposing Complex Questions](https://arxiv.org/abs/2212.04092) (Dec 2022)
- [Large Language Models are reasoners with Self-Verification](https://arxiv.org/abs/2212.09561v1) (Dec 2022)
- [Discovering Language Model Behaviors with Model-Written Evaluations](https://arxiv.org/abs/2212.09251) (Dec 2022)
- [PAL: Program-aided Language Models](https://arxiv.org/abs/2211.10435) (Nov 2022)
- [Large Language Models Are Human-Level Prompt Engineers](https://arxiv.org/abs/2211.01910) (Nov 2022)
- [Ignore Previous Prompt: Attack Techniques For Language Models](https://arxiv.org/abs/2211.09527) (Nov 2022)
- [Machine Generated Text: A Comprehensive Survey of Threat Models and Detection Methods](https://arxiv.org/abs/2210.07321) (Nov 2022)
- [Teaching Algorithmic Reasoning via In-context Learning](https://arxiv.org/abs/2211.09066) (Nov 2022)
- [Enhancing Self-Consistency and Performance of Pre-Trained Language Models through Natural Language Inference](https://arxiv.org/abs/2211.11875) (Nov 2022)
- [Ask Me Anything: A simple strategy for prompting language models](https://paperswithcode.com/paper/ask-me-anything-a-simple-strategy-for) (Oct 2022)
- [Recitation-Augmented Language Models](https://arxiv.org/abs/2210.01296) (Oct 2022)
- [ReAct: Synergizing Reasoning and Acting in Language Models](https://arxiv.org/abs/2210.03629) (Oct 2022)
- [Prompting GPT-3 To Be Reliable](https://arxiv.org/abs/2210.09150) (Oct 2022)
- [Decomposed Prompting: A Modular Approach for Solving Complex Tasks](https://arxiv.org/abs/2210.02406) (Oct 2022)
- [Language Models Are Greedy Reasoners: A Systematic Formal Analysis of Chain-of-Thought](https://arxiv.org/abs/2210.01240v3) (Oct 2022)
- [Evaluating the Susceptibility of Pre-Trained Language Models via Handcrafted Adversarial Examples](https://arxiv.org/abs/2209.02128) (Sep 2022)
- [Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning](https://arxiv.org/abs/2209.14610) (Sep 2022)
- [Promptagator: Few-shot Dense Retrieval From 8 Examples](https://arxiv.org/abs/2209.11755) (Sep 2022)
- [Atlas: Few-shot Learning with Retrieval Augmented Language Models](https://arxiv.org/abs/2208.03299) (Nov 2022)
- [DocPrompting: Generating Code by Retrieving the Docs](https://arxiv.org/abs/2207.05987) (July 2022)
- [On the Advance of Making Language Models Better Reasoners](https://arxiv.org/abs/2206.02336) (June 2022)
- [Large Language Models are Zero-Shot Reasoners](https://arxiv.org/abs/2205.11916) (May 2022)
- [MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning](https://arxiv.org/abs/2205.00445) (May 2022)
- [PPT: Pre-trained Prompt Tuning for Few-shot Learning](https://aclanthology.org/2022.acl-long.576/) (Mqy 2022)
- [Toxicity Detection with Generative Prompt-based Inference](https://arxiv.org/abs/2205.12390) (May 2022)
- [Learning to Transfer Prompts for Text Generation](https://arxiv.org/abs/2205.01543) (May 2022)
- [The Unreliability of Explanations in Few-shot Prompting for Textual Reasoning](https://arxiv.org/abs/2205.03401) (May 2022)
- [A Taxonomy of Prompt Modifiers for Text-To-Image Generation](https://arxiv.org/abs/2204.13988) (Apr 2022)
- [PromptChainer: Chaining Large Language Model Prompts through Visual Programming](https://arxiv.org/abs/2203.06566) (Mar 2022)
- [Self-Consistency Improves Chain of Thought Reasoning in Language Models](https://arxiv.org/abs/2203.11171) (March 2022)
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
- [Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?](https://arxiv.org/abs/2202.12837) (Feb 2022)
- [Chain of Thought Prompting Elicits Reasoning in Large Language Models](https://arxiv.org/abs/2201.11903) (Jan 2022)
- [Show Your Work: Scratchpads for Intermediate Computation with Language Models](https://arxiv.org/abs/2112.00114) (Nov 2021)
- [AI Chains: Transparent and Controllable Human-AI Interaction by Chaining Large Language Model Prompts](https://arxiv.org/abs/2110.01691) (Oct 2021)
- [Generated Knowledge Prompting for Commonsense Reasoning](https://arxiv.org/abs/2110.08387) (Oct 2021)
- [Multitask Prompted Training Enables Zero-Shot Task Generalization](https://arxiv.org/abs/2110.08207) (Oct 2021)
- [Reframing Instructional Prompts to GPTk's Language](https://arxiv.org/abs/2109.07830) (Sep 2021)
- [AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts](https://arxiv.org/abs/2010.15980) (Oct 2020)
- [Language Models are Few-Shot Learners](https://arxiv.org/abs/2005.14165) (May 2020)
- [How Can We Know What Language Models Know?](https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00324/96460/How-Can-We-Know-What-Language-Models-Know) (July 2020)
- [PromptClass: Weakly-Supervised Text Classification with Prompting Enhanced Noise-Robust Self-Training](https://arxiv.org/abs/2305.13723) (May 2023)
- [Aligning Large Language Models through Synthetic Feedback](https://arxiv.org/abs/2305.13735) (May 2023)
- [Concept-aware Training Improves In-context Learning Ability of Language Models](https://arxiv.org/abs/2305.13775) (May 2023)
- [Enhancing Black-Box Few-Shot Text Classification with Prompt-Based Data Augmentation](https://arxiv.org/abs/2305.13785) (May 2023)
- [Detecting automatically the layout of clinical documents to enhance the performances of downstream natural language processing](https://arxiv.org/abs/2305.13817) (May 2023)
- ["Is the Pope Catholic?" Applying Chain-of-Thought Reasoning to Understanding Conversational Implicatures](https://arxiv.org/abs/2305.13826) (May 2023)
- [Let's Think Frame by Frame: Evaluating Video Chain of Thought with Video Infilling and Prediction](https://arxiv.org/abs/2305.13903) (May 2023)
- [Generating Data for Symbolic Language with Large Language Models](https://arxiv.org/abs/2305.13917) (May 2023)
- [Make a Choice! Knowledge Base Question Answering with In-Context Learning](https://arxiv.org/abs/2305.13972) (May 2023)
- [Improving Language Models via Plug-and-Play Retrieval Feedback](https://arxiv.org/abs/2305.14002) (May 2023)
- [Multi-Granularity Prompts for Topic Shift Detection in Dialogue](https://arxiv.org/abs/2305.14006) (May 2023)
- [The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning](https://arxiv.org/abs/2305.14045) (May 2023)
- [Can Language Models Understand Physical Concepts?](https://arxiv.org/abs/2305.14057) (May 2023)
- [Evaluating Factual Consistency of Summaries with Large Language Models](https://arxiv.org/abs/2305.14069) (May 2023)
- [Probing in Context: Toward Building Robust Classifiers via Probing Large Language Models](https://arxiv.org/abs/2305.14171) (May 2023)
- [Skill-Based Few-Shot Selection for In-Context Learning](https://arxiv.org/abs/2305.14210) (May 2023)
- [Exploring Chain-of-Thought Style Prompting for Text-to-SQL](https://arxiv.org/abs/2305.14215) (May 2023)
- [Enhancing Chat Language Models by Scaling High-quality Instructional Conversations](https://arxiv.org/abs/2305.14233) (May 2023)
- [On Learning to Summarize with Large Language Models as References](https://arxiv.org/abs/2305.14239) (May 2023)
- [Learning to Generate Novel Scientific Directions with Contextualized Literature-based Discovery](https://arxiv.org/abs/2305.14259) (May 2023)
- [Active Learning Principles for In-Context Learning with Large Language Models](https://arxiv.org/abs/2305.14264) (May 2023)
- [Two Failures of Self-Consistency in the Multi-Step Reasoning of LLMs](https://arxiv.org/abs/2305.14279) (May 2023)
- [Improving Factuality and Reasoning in Language Models through Multiagent Debate](https://arxiv.org/abs/2305.14325) (May 2023)
- [ChatCoT: Tool-Augmented Chain-of-Thought Reasoning on\\ Chat-based Large Language Models](https://arxiv.org/abs/2305.14323) (May 2023)
- [WikiChat: A Few-Shot LLM-Based Chatbot Grounded with Wikipedia](https://arxiv.org/abs/2305.14292) (May 2023)
- [Query Rewriting for Retrieval-Augmented Large Language Models](https://arxiv.org/abs/2305.14283) (May 2023)
- [Discrete Prompt Optimization via Constrained Generation for Zero-shot Re-ranker](https://arxiv.org/abs/2305.13729) (May 2023)
- [Element-aware Summarization with Large Language Models: Expert-aligned Evaluation and Chain-of-Thought Method](https://arxiv.org/abs/2305.13412) (May 2023)
- [Small Language Models Improve Giants by Rewriting Their Outputs](https://arxiv.org/abs/2305.13514) (May 2023)
- [Prompting and Evaluating Large Language Models for Proactive Dialogues: Clarification, Target-guided, and Non-collaboration](https://arxiv.org/abs/2305.13626) (May 2023)
- [Prompt-Based Monte-Carlo Tree Search for Goal-Oriented Dialogue Policy Planning](https://arxiv.org/abs/2305.13660) (May 2023)
- [Mitigating Language Model Hallucination with Interactive Question-Knowledge Alignment](https://arxiv.org/abs/2305.13669) (May 2023)
- [Making Language Models Better Tool Learners with Execution Feedback](https://arxiv.org/abs/2305.13068) (May 2023)
- [Text-to-SQL Error Correction with Language Models of Code](https://arxiv.org/abs/2305.13073) (May 2023)
- [Decomposed Prompting for Machine Translation Between Related Languages using Large Language Models](https://arxiv.org/abs/2305.13085) (May 2023)
- [SPARSEFIT: Few-shot Prompting with Sparse Fine-tuning for Jointly Generating Predictions and Natural Language Explanations](https://arxiv.org/abs/2305.13235) (May 2023)
- ["According to ..." Prompting Language Models Improves Quoting from Pre-Training Data](https://arxiv.org/abs/2305.13252) (May 2023)
- [Prompt-based methods may underestimate large language models' linguistic generalizations](https://arxiv.org/abs/2305.13264) (May 2023)
- [Chain of Knowledge: A Framework for Grounding Large Language Models with Structured Knowledge Bases](https://arxiv.org/abs/2305.13269) (May 2023)
- [Measuring Inductive Biases of In-Context Learning with Underspecified Demonstrations](https://arxiv.org/abs/2305.13299) (May 2023)
- [Automated Few-shot Classification with Instruction-Finetuned Language Models](https://arxiv.org/abs/2305.12576) (May 2023)
- [Enhancing Few-shot Text-to-SQL Capabilities of Large Language Models: A Study on Prompt Design Strategies](https://arxiv.org/abs/2305.12586) (May 2023)
- [Enhancing Cross-lingual Natural Language Inference by Soft Prompting with Multilingual Verbalizer](https://arxiv.org/abs/2305.12761) (May 2023)
- [Evaluating Prompt-based Question Answering for Object Prediction in the Open Research Knowledge Graph](https://arxiv.org/abs/2305.12900) (May 2023)
- [Explaining How Transformers Use Context to Build Predictions](https://arxiv.org/abs/2305.12535) (May 2023)
- [PiVe: Prompting with Iterative Verification Improving Graph-based Generative Capability of LLMs](https://arxiv.org/abs/2305.12392) (May 2023)
- [PromptNER: A Prompting Method for Few-shot Named Entity Recognition via k Nearest Neighbor Search](https://arxiv.org/abs/2305.12217) (May 2023)
- [Logic-LM: Empowering Large Language Models with Symbolic Solvers for Faithful Logical Reasoning](https://arxiv.org/abs/2305.12295) (May 2023)
- [Enhancing Few-shot NER with Prompt Ordering based Data Augmentation](https://arxiv.org/abs/2305.11791) (May 2023)
- [Chain-of-thought prompting for responding to in-depth dialogue questions with LLM](https://arxiv.org/abs/2305.11792) (May 2023)
- [How to Prompt LLMs for Text-to-SQL: A Study in Zero-shot, Single-domain, and Cross-domain Settings](https://arxiv.org/abs/2305.11853) (May 2023)
- [Evaluation of medium-large Language Models at zero-shot closed book generative question answering](https://arxiv.org/abs/2305.11991) (May 2023)
- [Few-Shot Dialogue Summarization via Skeleton-Assisted Prompt Transfer](https://arxiv.org/abs/2305.12077) (May 2023)
- [Can NLP Models Correctly Reason Over Contexts that Break the Common Assumptions?](https://arxiv.org/abs/2305.12096) (May 2023)
- [Reasoning Implicit Sentiment with Chain-of-Thought Prompting](https://arxiv.org/abs/2305.11255) (May 2023)
- [Writing your own book: A method for going from closed to open book QA to improve robustness and performance of smaller LLMs](https://arxiv.org/abs/2305.11334) (May 2023)
- [AutoTrial: Prompting Language Models for Clinical Trial Design](https://arxiv.org/abs/2305.11366) (May 2023)
- [CRITIC: Large Language Models Can Self-Correct with Tool-Interactive Critiquing](https://arxiv.org/abs/2305.11738) (May 2023)
- [Controlling the Extraction of Memorized Data from Large Language Models via Prompt-Tuning](https://arxiv.org/abs/2305.11759) (May 2023)
- [Prompting with Pseudo-Code Instructions](https://arxiv.org/abs/2305.11790) (May 2023)
- [TrueTeacher: Learning Factual Consistency Evaluation with Large Language Models](https://arxiv.org/abs/2305.11171) (May 2023)
- [Aligning Instruction Tasks Unlocks Large Language Models as Zero-Shot Relation Extractors](https://arxiv.org/abs/2305.11159) (May 2023)
- [Exploiting Biased Models to De-bias Text: A Gender-Fair Rewriting Model](https://arxiv.org/abs/2305.11140) (May 2023)
- [Learning In-context Learning for Named Entity Recognition](https://arxiv.org/abs/2305.11038) (May 2023)
- [Take a Break in the Middle: Investigating Subgoals towards Hierarchical Script Generation](https://arxiv.org/abs/2305.10907) (May 2023)
- [Large Language Models can be Guided to Evade AI-Generated Text Detection](https://arxiv.org/abs/2305.10847) (May 2023)
- [Temporal Knowledge Graph Forecasting Without Knowledge Using In-Context Learning](https://arxiv.org/abs/2305.10613) (May 2023)
- [Prompting the Hidden Talent of Web-Scale Speech Models for Zero-Shot Task Generalization](https://arxiv.org/abs/2305.11095) (May 2023)
- [Think Outside the Code: Brainstorming Boosts Large Language Models in Code Generation](https://arxiv.org/abs/2305.10679) (May 2023)
- [Improving Language Model Negotiation with Self-Play and In-Context Learning from AI Feedback](https://arxiv.org/abs/2305.10142) (May 2023)
- [ConvXAI: Delivering Heterogeneous AI Explanations via Conversations to Support Human-AI Scientific Writing](https://arxiv.org/abs/2305.09770) (May 2023)
- [StructGPT: A General Framework for Large Language Model to Reason over Structured Data](https://arxiv.org/abs/2305.09645) (May 2023)
- [Towards Expert-Level Medical Question Answering with Large Language Models](https://arxiv.org/abs/2305.09617) (May 2023)
- [Large Language Models are Built-in Autoregressive Search Engines](https://arxiv.org/abs/2305.09612) (May 2023)
- [Automated Reading Passage Generation with OpenAI's Large Language Model](https://arxiv.org/abs/2304.04616) (April 2023)
- [WebBrain: Learning to Generate Factually Correct Articles for Queries by Grounding on Large Web Corpus](https://arxiv.org/abs/2304.04358) (April 2023)
- [Prompt Pre-Training with Twenty-Thousand Classes for Open-Vocabulary Visual Recognition](https://arxiv.org/abs/2304.04704) (April 2023)
- [GPT detectors are biased against non-native English writers](https://arxiv.org/abs/2304.02819) (April 2023)
- [Zero-Shot Next-Item Recommendation using Large Pretrained Language Models](https://arxiv.org/abs/2304.03153) (April 2023)
- [Large Language Models as Master Key: Unlocking the Secrets of Materials Science with GPT](https://arxiv.org/abs/2304.02213) (April 2023)
- [Efficiently Aligned Cross-Lingual Transfer Learning for Conversational Tasks using Prompt-Tuning](https://arxiv.org/abs/2304.01295) (April 2023)
- [Better Language Models of Code through Self-Improvement](https://arxiv.org/abs/2304.01228) (April 2023)
- [PromptORE -- A Novel Approach Towards Fully Unsupervised Relation Extraction](https://arxiv.org/abs/2304.01209) (April)
- [BloombergGPT: A Large Language Model for Finance](https://arxiv.org/abs/2303.17564) (March 2023)
- [Medical Intervention Duration Estimation Using Language-enhanced Transformer Encoder with Medical Prompts](https://arxiv.org/abs/2303.17408) (March 2023)
- [Soft-prompt tuning to predict lung cancer using primary care free-text Dutch medical notes](https://arxiv.org/abs/2303.15846) (March 2023)
- [TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with Millions of APIs](https://arxiv.org/abs/2303.16434) (March 2023)
- [Larger Probes Tell a Different Story: Extending Psycholinguistic Datasets Via In-Context Learning](https://arxiv.org/abs/2303.16445) (March 2023)
- [Linguistically Informed ChatGPT Prompts to Enhance Japanese-Chinese Machine Translation: A Case Study on Attributive Clauses](https://arxiv.org/abs/2303.15587) (March 2023)
- [Knowledge-augmented Frame Semantic Parsing with Hybrid Prompt-tuning](https://arxiv.org/abs/2303.14375) (March 2023)
- [Debiasing Scores and Prompts of 2D Diffusion for Robust Text-to-3D Generation](https://arxiv.org/abs/2303.15413) (March 2023)
- [Zero-shot Model Diagnosis](https://arxiv.org/abs/2303.15441#) (March 2023)
- [Prompting Large Language Models to Generate Code-Mixed Texts: The Case of South East Asian Languages](https://arxiv.org/abs/2303.13592) (March 2023)
- [Large Language Models in the Workplace: A Case Study on Prompt Engineering for Job Type Classification](https://arxiv.org/abs/2303.07142) (March 2023)
- [ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for Document Information Extraction](https://arxiv.org/abs/2303.05063) (March 2023)
- [MathPrompter: Mathematical Reasoning using Large Language Models](https://arxiv.org/abs/2303.05398) (March 2023)
- [Prompt-Based Learning for Thread Structure Prediction in Cybersecurity Forums](https://arxiv.org/abs/2303.05400) (March 2023)
- [Choice Over Control: How Users Write with Large Language Models using Diegetic and Non-Diegetic Prompting](https://arxiv.org/abs/2303.03199) (March 2023)
- [Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering](https://arxiv.org/abs/2303.01903) (March 2023)
- [Goal Driven Discovery of Distributional Differences via Language Descriptions](https://arxiv.org/abs/2302.14233) (Feb 2023)
- [Navigating the Grey Area: Expressions of Overconfidence and Uncertainty in Language Models](https://arxiv.org/abs/2302.13439) (Feb 2023)
- [TabGenie: A Toolkit for Table-to-Text Generation](https://arxiv.org/abs/2302.14169) (Feb 2023)
- [SGL-PT: A Strong Graph Learner with Graph Prompt Tuning](https://arxiv.org/abs/2302.12449) (Feb 2023)
- [Few-Shot Table-to-Text Generation with Prompt-based Adapter](https://arxiv.org/abs/2302.12468) (Feb 2023)
- [Language Models Are Few-shot Learners for Prognostic Prediction](https://arxiv.org/abs/2302.12692) (Feb 2023)
- [STA: Self-controlled Text Augmentation for Improving Text Classifications](https://arxiv.org/abs/2302.12784) (Feb 2023)
- [Check Your Facts and Try Again: Improving Large Language Models with External Knowledge and Automated Feedback](https://arxiv.org/abs/2302.12813) (Feb 2023)
- [How Generative AI models such as ChatGPT can be (Mis)Used in SPC Practice, Education, and Research? An Exploratory Study](https://arxiv.org/abs/2302.10916) (Feb 2023)
- [Grimm in Wonderland: Prompt Engineering with Midjourney to Illustrate Fairytales](https://arxiv.org/abs/2302.08961) (Feb 2023)
- [LabelPrompt: Effective Prompt-based Learning for Relation Classification](https://arxiv.org/abs/2302.08068) (Feb 2023)
- [Language Model Crossover: Variation through Few-Shot Prompting](https://arxiv.org/abs/2302.09236) (Feb 2023)
- [Prompt Tuning of Deep Neural Networks for Speaker-adaptive Visual Speech Recognition](https://arxiv.org/abs/2302.08102) (Feb 2023)
- [The Capacity for Moral Self-Correction in Large Language Models](https://arxiv.org/abs/2302.07459) (Feb 2023)
- [Prompting for Multimodal Hateful Meme Classification](https://arxiv.org/abs/2302.04156) (Feb 2023)
- [PLACES: Prompting Language Models for Social Conversation Synthesis](https://arxiv.org/abs/2302.03269) (Feb 2023)
- [Commonsense-Aware Prompting for Controllable Empathetic Dialogue Generation](https://arxiv.org/abs/2302.01441) (Feb 2023)
- [Crawling the Internal Knowledge-Base of Language Models](https://arxiv.org/abs/2301.12810) (Jan 2023)