mirror of
https://github.com/JGRennison/OpenTTD-patches.git
synced 2024-11-11 13:10:45 +00:00
485 lines
16 KiB
C++
485 lines
16 KiB
C++
/*
|
|
* This file is part of OpenTTD.
|
|
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
|
|
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/** @file articulated_vehicles.cpp Implementation of articulated vehicles. */
|
|
|
|
#include "stdafx.h"
|
|
#include "train.h"
|
|
#include "roadveh.h"
|
|
#include "vehicle_func.h"
|
|
#include "engine_func.h"
|
|
#include "company_func.h"
|
|
#include "newgrf.h"
|
|
#include <vector>
|
|
|
|
#include "table/strings.h"
|
|
|
|
#include "safeguards.h"
|
|
|
|
static const uint MAX_ARTICULATED_PARTS = 100; ///< Maximum of articulated parts per vehicle, i.e. when to abort calling the articulated vehicle callback.
|
|
|
|
/**
|
|
* Determines the next articulated part to attach
|
|
* @param index Position in chain
|
|
* @param front_type Front engine type
|
|
* @param front Front engine
|
|
* @param mirrored Returns whether the part shall be flipped.
|
|
* @return engine to add or INVALID_ENGINE
|
|
*/
|
|
static EngineID GetNextArticulatedPart(uint index, EngineID front_type, Vehicle *front = nullptr, bool *mirrored = nullptr)
|
|
{
|
|
assert(front == nullptr || front->engine_type == front_type);
|
|
|
|
const Engine *front_engine = Engine::Get(front_type);
|
|
|
|
uint16 callback = GetVehicleCallback(CBID_VEHICLE_ARTIC_ENGINE, index, 0, front_type, front);
|
|
if (callback == CALLBACK_FAILED) return INVALID_ENGINE;
|
|
|
|
if (front_engine->GetGRF()->grf_version < 8) {
|
|
/* 8 bits, bit 7 for mirroring */
|
|
callback = GB(callback, 0, 8);
|
|
if (callback == 0xFF) return INVALID_ENGINE;
|
|
if (mirrored != nullptr) *mirrored = HasBit(callback, 7);
|
|
callback = GB(callback, 0, 7);
|
|
} else {
|
|
/* 15 bits, bit 14 for mirroring */
|
|
if (callback == 0x7FFF) return INVALID_ENGINE;
|
|
if (mirrored != nullptr) *mirrored = HasBit(callback, 14);
|
|
callback = GB(callback, 0, 14);
|
|
}
|
|
|
|
return GetNewEngineID(front_engine->GetGRF(), front_engine->type, callback);
|
|
}
|
|
|
|
/**
|
|
* Does a NewGRF report that this should be an articulated vehicle?
|
|
* @param engine_type The engine to check.
|
|
* @return True iff the articulated engine callback flag is set.
|
|
*/
|
|
bool IsArticulatedEngine(EngineID engine_type)
|
|
{
|
|
return HasBit(EngInfo(engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE);
|
|
}
|
|
|
|
/**
|
|
* Count the number of articulated parts of an engine.
|
|
* @param engine_type The engine to get the number of parts of.
|
|
* @param purchase_window Whether we are in the scope of the purchase window or not, i.e. whether we cannot allocate vehicles.
|
|
* @return The number of parts.
|
|
*/
|
|
uint CountArticulatedParts(EngineID engine_type, bool purchase_window)
|
|
{
|
|
if (!HasBit(EngInfo(engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return 0;
|
|
|
|
/* If we can't allocate a vehicle now, we can't allocate it in the command
|
|
* either, so it doesn't matter how many articulated parts there are. */
|
|
if (!Vehicle::CanAllocateItem()) return 0;
|
|
|
|
Vehicle *v = nullptr;
|
|
if (!purchase_window) {
|
|
v = new Vehicle();
|
|
v->engine_type = engine_type;
|
|
v->owner = _current_company;
|
|
}
|
|
|
|
uint i;
|
|
for (i = 1; i < MAX_ARTICULATED_PARTS; i++) {
|
|
if (GetNextArticulatedPart(i, engine_type, v) == INVALID_ENGINE) break;
|
|
}
|
|
|
|
delete v;
|
|
|
|
return i - 1;
|
|
}
|
|
|
|
/**
|
|
* Count the number of articulated parts of an engine.
|
|
* @param engine_type The engine to get the number of parts of.
|
|
* @param purchase_window Whether we are in the scope of the purchase window or not, i.e. whether we cannot allocate vehicles.
|
|
* @param ids [Out] The list of engine IDs.
|
|
*/
|
|
void GetArticulatedPartsEngineIDs(EngineID engine_type, bool purchase_window, std::vector<EngineID> &ids)
|
|
{
|
|
ids.clear();
|
|
if (!HasBit(EngInfo(engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return;
|
|
|
|
/* If we can't allocate a vehicle now, we can't allocate it in the command
|
|
* either, so it doesn't matter how many articulated parts there are. */
|
|
if (!Vehicle::CanAllocateItem()) return;
|
|
|
|
Vehicle *v = nullptr;
|
|
if (!purchase_window) {
|
|
v = new Vehicle();
|
|
v->engine_type = engine_type;
|
|
v->owner = _current_company;
|
|
}
|
|
|
|
uint i;
|
|
for (i = 1; i < MAX_ARTICULATED_PARTS; i++) {
|
|
EngineID id = GetNextArticulatedPart(i, engine_type, v);
|
|
if (id == INVALID_ENGINE) break;
|
|
ids.push_back(id);
|
|
}
|
|
|
|
delete v;
|
|
}
|
|
|
|
|
|
/**
|
|
* Returns the default (non-refitted) capacity of a specific EngineID.
|
|
* @param engine the EngineID of interest
|
|
* @param cargo_type returns the default cargo type, if needed
|
|
* @return capacity
|
|
*/
|
|
static inline uint16 GetVehicleDefaultCapacity(EngineID engine, CargoID *cargo_type)
|
|
{
|
|
const Engine *e = Engine::Get(engine);
|
|
CargoID cargo = (e->CanCarryCargo() ? e->GetDefaultCargoType() : (CargoID)CT_INVALID);
|
|
if (cargo_type != nullptr) *cargo_type = cargo;
|
|
if (cargo == CT_INVALID) return 0;
|
|
return e->GetDisplayDefaultCapacity();
|
|
}
|
|
|
|
/**
|
|
* Returns all cargoes a vehicle can carry.
|
|
* @param engine the EngineID of interest
|
|
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
|
|
* @return bit set of CargoIDs
|
|
*/
|
|
static inline CargoTypes GetAvailableVehicleCargoTypes(EngineID engine, bool include_initial_cargo_type)
|
|
{
|
|
const Engine *e = Engine::Get(engine);
|
|
if (!e->CanCarryCargo()) return 0;
|
|
|
|
CargoTypes cargoes = e->info.refit_mask;
|
|
|
|
if (include_initial_cargo_type) {
|
|
SetBit(cargoes, e->GetDefaultCargoType());
|
|
}
|
|
|
|
return cargoes;
|
|
}
|
|
|
|
/**
|
|
* Get the capacity of the parts of a given engine.
|
|
* @param engine The engine to get the capacities from.
|
|
* @return The cargo capacities.
|
|
*/
|
|
CargoArray GetCapacityOfArticulatedParts(EngineID engine)
|
|
{
|
|
CargoArray capacity;
|
|
const Engine *e = Engine::Get(engine);
|
|
|
|
CargoID cargo_type;
|
|
uint16 cargo_capacity = GetVehicleDefaultCapacity(engine, &cargo_type);
|
|
if (cargo_type < NUM_CARGO) capacity[cargo_type] = cargo_capacity;
|
|
|
|
if (!e->IsGroundVehicle()) return capacity;
|
|
|
|
if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return capacity;
|
|
|
|
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
|
|
EngineID artic_engine = GetNextArticulatedPart(i, engine);
|
|
if (artic_engine == INVALID_ENGINE) break;
|
|
|
|
cargo_capacity = GetVehicleDefaultCapacity(artic_engine, &cargo_type);
|
|
if (cargo_type < NUM_CARGO) capacity[cargo_type] += cargo_capacity;
|
|
}
|
|
|
|
return capacity;
|
|
}
|
|
|
|
/**
|
|
* Get the default cargoes and refits of an articulated vehicle.
|
|
* The refits are linked to a cargo rather than an articulated part to prevent a long list of parts.
|
|
* @param engine Model to investigate.
|
|
* @param[out] cargoes Total amount of units that can be transported, summed by cargo.
|
|
* @param[out] refits Whether a (possibly partial) refit for each cargo is possible.
|
|
* @param cargo_type Selected refitted cargo type
|
|
* @param cargo_capacity Capacity of selected refitted cargo type
|
|
*/
|
|
void GetArticulatedVehicleCargoesAndRefits(EngineID engine, CargoArray *cargoes, CargoTypes *refits, CargoID cargo_type, uint cargo_capacity)
|
|
{
|
|
cargoes->Clear();
|
|
*refits = 0;
|
|
|
|
const Engine *e = Engine::Get(engine);
|
|
|
|
if (cargo_type < NUM_CARGO && cargo_capacity > 0) {
|
|
(*cargoes)[cargo_type] += cargo_capacity;
|
|
if (IsEngineRefittable(engine)) SetBit(*refits, cargo_type);
|
|
}
|
|
|
|
if (!e->IsGroundVehicle() || !HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return;
|
|
|
|
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
|
|
EngineID artic_engine = GetNextArticulatedPart(i, engine);
|
|
if (artic_engine == INVALID_ENGINE) break;
|
|
|
|
cargo_capacity = GetVehicleDefaultCapacity(artic_engine, &cargo_type);
|
|
if (cargo_type < NUM_CARGO && cargo_capacity > 0) {
|
|
(*cargoes)[cargo_type] += cargo_capacity;
|
|
if (IsEngineRefittable(artic_engine)) SetBit(*refits, cargo_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Checks whether any of the articulated parts is refittable
|
|
* @param engine the first part
|
|
* @return true if refittable
|
|
*/
|
|
bool IsArticulatedVehicleRefittable(EngineID engine)
|
|
{
|
|
if (IsEngineRefittable(engine)) return true;
|
|
|
|
const Engine *e = Engine::Get(engine);
|
|
if (!e->IsGroundVehicle()) return false;
|
|
|
|
if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return false;
|
|
|
|
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
|
|
EngineID artic_engine = GetNextArticulatedPart(i, engine);
|
|
if (artic_engine == INVALID_ENGINE) break;
|
|
|
|
if (IsEngineRefittable(artic_engine)) return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Merges the refit_masks of all articulated parts.
|
|
* @param engine the first part
|
|
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
|
|
* @param union_mask returns bit mask of CargoIDs which are a refit option for at least one articulated part
|
|
* @param intersection_mask returns bit mask of CargoIDs which are a refit option for every articulated part (with default capacity > 0)
|
|
*/
|
|
void GetArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type, CargoTypes *union_mask, CargoTypes *intersection_mask)
|
|
{
|
|
const Engine *e = Engine::Get(engine);
|
|
CargoTypes veh_cargoes = GetAvailableVehicleCargoTypes(engine, include_initial_cargo_type);
|
|
*union_mask = veh_cargoes;
|
|
*intersection_mask = (veh_cargoes != 0) ? veh_cargoes : ALL_CARGOTYPES;
|
|
|
|
if (!e->IsGroundVehicle()) return;
|
|
if (!HasBit(e->info.callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return;
|
|
|
|
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
|
|
EngineID artic_engine = GetNextArticulatedPart(i, engine);
|
|
if (artic_engine == INVALID_ENGINE) break;
|
|
|
|
veh_cargoes = GetAvailableVehicleCargoTypes(artic_engine, include_initial_cargo_type);
|
|
*union_mask |= veh_cargoes;
|
|
if (veh_cargoes != 0) *intersection_mask &= veh_cargoes;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Ors the refit_masks of all articulated parts.
|
|
* @param engine the first part
|
|
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
|
|
* @return bit mask of CargoIDs which are a refit option for at least one articulated part
|
|
*/
|
|
CargoTypes GetUnionOfArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type)
|
|
{
|
|
CargoTypes union_mask, intersection_mask;
|
|
GetArticulatedRefitMasks(engine, include_initial_cargo_type, &union_mask, &intersection_mask);
|
|
return union_mask;
|
|
}
|
|
|
|
/**
|
|
* Ands the refit_masks of all articulated parts.
|
|
* @param engine the first part
|
|
* @param include_initial_cargo_type if true the default cargo type of the vehicle is included; if false only the refit_mask
|
|
* @return bit mask of CargoIDs which are a refit option for every articulated part (with default capacity > 0)
|
|
*/
|
|
CargoTypes GetIntersectionOfArticulatedRefitMasks(EngineID engine, bool include_initial_cargo_type)
|
|
{
|
|
CargoTypes union_mask, intersection_mask;
|
|
GetArticulatedRefitMasks(engine, include_initial_cargo_type, &union_mask, &intersection_mask);
|
|
return intersection_mask;
|
|
}
|
|
|
|
|
|
/**
|
|
* Tests if all parts of an articulated vehicle are refitted to the same cargo.
|
|
* Note: Vehicles not carrying anything are ignored
|
|
* @param v the first vehicle in the chain
|
|
* @param cargo_type returns the common CargoID if needed. (CT_INVALID if no part is carrying something or they are carrying different things)
|
|
* @return true if some parts are carrying different cargoes, false if all parts are carrying the same (nothing is also the same)
|
|
*/
|
|
bool IsArticulatedVehicleCarryingDifferentCargoes(const Vehicle *v, CargoID *cargo_type)
|
|
{
|
|
CargoID first_cargo = CT_INVALID;
|
|
|
|
do {
|
|
if (v->cargo_type != CT_INVALID && v->GetEngine()->CanCarryCargo()) {
|
|
if (first_cargo == CT_INVALID) first_cargo = v->cargo_type;
|
|
if (first_cargo != v->cargo_type) {
|
|
if (cargo_type != nullptr) *cargo_type = CT_INVALID;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
v = v->HasArticulatedPart() ? v->GetNextArticulatedPart() : nullptr;
|
|
} while (v != nullptr);
|
|
|
|
if (cargo_type != nullptr) *cargo_type = first_cargo;
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Checks whether the specs of freshly build articulated vehicles are consistent with the information specified in the purchase list.
|
|
* Only essential information is checked to leave room for magic tricks/workarounds to grfcoders.
|
|
* It checks:
|
|
* For autoreplace/-renew:
|
|
* - Default cargo type (without capacity)
|
|
* - intersection and union of refit masks.
|
|
*/
|
|
void CheckConsistencyOfArticulatedVehicle(const Vehicle *v)
|
|
{
|
|
const Engine *engine = v->GetEngine();
|
|
|
|
CargoTypes purchase_refit_union, purchase_refit_intersection;
|
|
GetArticulatedRefitMasks(v->engine_type, true, &purchase_refit_union, &purchase_refit_intersection);
|
|
CargoArray purchase_default_capacity = GetCapacityOfArticulatedParts(v->engine_type);
|
|
|
|
CargoTypes real_refit_union = 0;
|
|
CargoTypes real_refit_intersection = ALL_CARGOTYPES;
|
|
CargoArray real_default_capacity;
|
|
|
|
do {
|
|
CargoTypes refit_mask = GetAvailableVehicleCargoTypes(v->engine_type, true);
|
|
real_refit_union |= refit_mask;
|
|
if (refit_mask != 0) real_refit_intersection &= refit_mask;
|
|
|
|
assert(v->cargo_type < NUM_CARGO);
|
|
real_default_capacity[v->cargo_type] += v->cargo_cap;
|
|
|
|
v = v->HasArticulatedPart() ? v->GetNextArticulatedPart() : nullptr;
|
|
} while (v != nullptr);
|
|
|
|
/* Check whether the vehicle carries more cargoes than expected */
|
|
bool carries_more = false;
|
|
for (CargoID cid = 0; cid < NUM_CARGO; cid++) {
|
|
if (real_default_capacity[cid] != 0 && purchase_default_capacity[cid] == 0) {
|
|
carries_more = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* show a warning once for each GRF after each game load */
|
|
if (real_refit_union != purchase_refit_union || real_refit_intersection != purchase_refit_intersection || carries_more) {
|
|
ShowNewGrfVehicleError(engine->index, STR_NEWGRF_BUGGY, STR_NEWGRF_BUGGY_ARTICULATED_CARGO, GBUG_VEH_REFIT, false);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Add the remaining articulated parts to the given vehicle.
|
|
* @param first The head of the articulated bit.
|
|
*/
|
|
void AddArticulatedParts(Vehicle *first)
|
|
{
|
|
VehicleType type = first->type;
|
|
if (!HasBit(EngInfo(first->engine_type)->callback_mask, CBM_VEHICLE_ARTIC_ENGINE)) return;
|
|
|
|
Vehicle *v = first;
|
|
for (uint i = 1; i < MAX_ARTICULATED_PARTS; i++) {
|
|
bool flip_image;
|
|
EngineID engine_type = GetNextArticulatedPart(i, first->engine_type, first, &flip_image);
|
|
if (engine_type == INVALID_ENGINE) return;
|
|
|
|
/* In the (very rare) case the GRF reported wrong number of articulated parts
|
|
* and we run out of available vehicles, bail out. */
|
|
if (!Vehicle::CanAllocateItem()) return;
|
|
|
|
GroundVehicleCache *gcache = v->GetGroundVehicleCache();
|
|
gcache->first_engine = v->engine_type; // Needs to be set before first callback
|
|
|
|
const Engine *e_artic = Engine::Get(engine_type);
|
|
switch (type) {
|
|
default: NOT_REACHED();
|
|
|
|
case VEH_TRAIN: {
|
|
Train *front = Train::From(first);
|
|
Train *t = new Train();
|
|
v->SetNext(t);
|
|
v = t;
|
|
|
|
t->subtype = 0;
|
|
t->track = front->track;
|
|
t->railtype = front->railtype;
|
|
|
|
t->spritenum = e_artic->u.rail.image_index;
|
|
if (e_artic->CanCarryCargo()) {
|
|
t->cargo_type = e_artic->GetDefaultCargoType();
|
|
t->cargo_cap = e_artic->u.rail.capacity; // Callback 36 is called when the consist is finished
|
|
} else {
|
|
t->cargo_type = front->cargo_type; // Needed for livery selection
|
|
t->cargo_cap = 0;
|
|
}
|
|
t->refit_cap = 0;
|
|
|
|
if (front->IsVirtual()) t->SetVirtual();
|
|
|
|
t->SetArticulatedPart();
|
|
break;
|
|
}
|
|
|
|
case VEH_ROAD: {
|
|
RoadVehicle *front = RoadVehicle::From(first);
|
|
RoadVehicle *rv = new RoadVehicle();
|
|
v->SetNext(rv);
|
|
v = rv;
|
|
|
|
rv->subtype = 0;
|
|
gcache->cached_veh_length = VEHICLE_LENGTH; // Callback is called when the consist is finished
|
|
rv->state = RVSB_IN_DEPOT;
|
|
|
|
rv->roadtype = front->roadtype;
|
|
rv->compatible_roadtypes = front->compatible_roadtypes;
|
|
|
|
rv->spritenum = e_artic->u.road.image_index;
|
|
if (e_artic->CanCarryCargo()) {
|
|
rv->cargo_type = e_artic->GetDefaultCargoType();
|
|
rv->cargo_cap = e_artic->u.road.capacity; // Callback 36 is called when the consist is finished
|
|
} else {
|
|
rv->cargo_type = front->cargo_type; // Needed for livery selection
|
|
rv->cargo_cap = 0;
|
|
}
|
|
rv->refit_cap = 0;
|
|
|
|
rv->SetArticulatedPart();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* get common values from first engine */
|
|
v->direction = first->direction;
|
|
v->owner = first->owner;
|
|
v->tile = first->tile;
|
|
v->x_pos = first->x_pos;
|
|
v->y_pos = first->y_pos;
|
|
v->z_pos = first->z_pos;
|
|
v->date_of_last_service = first->date_of_last_service;
|
|
v->build_year = first->build_year;
|
|
v->vehstatus = first->vehstatus & ~VS_STOPPED;
|
|
|
|
v->cargo_subtype = 0;
|
|
v->max_age = 0;
|
|
v->engine_type = engine_type;
|
|
v->value = 0;
|
|
v->sprite_seq.Set(SPR_IMG_QUERY);
|
|
v->random_bits = VehicleRandomBits();
|
|
|
|
if (flip_image) v->spritenum++;
|
|
|
|
v->UpdatePosition();
|
|
}
|
|
}
|