OpenTTD-patches/src/tilearea.cpp

298 lines
8.0 KiB
C++

/*
* This file is part of OpenTTD.
* OpenTTD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.
* OpenTTD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenTTD. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file tilearea.cpp Handling of tile areas. */
#include "stdafx.h"
#include "tilearea_type.h"
#include "safeguards.h"
/**
* Construct this tile area based on two points.
* @param start the start of the area
* @param end the end of the area
*/
OrthogonalTileArea::OrthogonalTileArea(TileIndex start, TileIndex end)
{
assert(start < Map::Size());
assert(end < Map::Size());
uint sx = TileX(start);
uint sy = TileY(start);
uint ex = TileX(end);
uint ey = TileY(end);
if (sx > ex) Swap(sx, ex);
if (sy > ey) Swap(sy, ey);
this->tile = TileXY(sx, sy);
this->w = ex - sx + 1;
this->h = ey - sy + 1;
}
/**
* Add a single tile to a tile area; enlarge if needed.
* @param to_add The tile to add
*/
void OrthogonalTileArea::Add(TileIndex to_add)
{
if (this->tile == INVALID_TILE) {
this->tile = to_add;
this->w = 1;
this->h = 1;
return;
}
uint sx = TileX(this->tile);
uint sy = TileY(this->tile);
uint ex = sx + this->w - 1;
uint ey = sy + this->h - 1;
uint ax = TileX(to_add);
uint ay = TileY(to_add);
sx = std::min(ax, sx);
sy = std::min(ay, sy);
ex = std::max(ax, ex);
ey = std::max(ay, ey);
this->tile = TileXY(sx, sy);
this->w = ex - sx + 1;
this->h = ey - sy + 1;
}
/**
* Does this tile area intersect with another?
* @param ta the other tile area to check against.
* @return true if they intersect.
*/
bool OrthogonalTileArea::Intersects(const OrthogonalTileArea &ta) const
{
if (ta.w == 0 || this->w == 0) return false;
assert(ta.w != 0 && ta.h != 0 && this->w != 0 && this->h != 0);
uint left1 = TileX(this->tile);
uint top1 = TileY(this->tile);
uint right1 = left1 + this->w - 1;
uint bottom1 = top1 + this->h - 1;
uint left2 = TileX(ta.tile);
uint top2 = TileY(ta.tile);
uint right2 = left2 + ta.w - 1;
uint bottom2 = top2 + ta.h - 1;
return !(
left2 > right1 ||
right2 < left1 ||
top2 > bottom1 ||
bottom2 < top1
);
}
/**
* Does this tile area contain a tile?
* @param tile Tile to test for.
* @return True if the tile is inside the area.
*/
bool OrthogonalTileArea::Contains(TileIndex tile) const
{
if (this->w == 0) return false;
assert(this->w != 0 && this->h != 0);
uint left = TileX(this->tile);
uint top = TileY(this->tile);
uint tile_x = TileX(tile);
uint tile_y = TileY(tile);
return IsInsideBS(tile_x, left, this->w) && IsInsideBS(tile_y, top, this->h);
}
/**
* Expand a tile area by rad tiles in each direction, keeping within map bounds.
* @param rad Number of tiles to expand
* @return The OrthogonalTileArea.
*/
OrthogonalTileArea &OrthogonalTileArea::Expand(int rad)
{
int x = TileX(this->tile);
int y = TileY(this->tile);
int sx = std::max<int>(x - rad, 0);
int sy = std::max<int>(y - rad, 0);
int ex = std::min<int>(x + this->w + rad, Map::SizeX());
int ey = std::min<int>(y + this->h + rad, Map::SizeY());
this->tile = TileXY(sx, sy);
this->w = ex - sx;
this->h = ey - sy;
return *this;
}
/**
* Clamp the tile area to map borders.
*/
void OrthogonalTileArea::ClampToMap()
{
assert(this->tile < Map::Size());
this->w = std::min<int>(this->w, Map::SizeX() - TileX(this->tile));
this->h = std::min<int>(this->h, Map::SizeY() - TileY(this->tile));
}
/**
* Returns an iterator to the beginning of the tile area.
* @return The OrthogonalTileIterator.
*/
OrthogonalTileIterator OrthogonalTileArea::begin() const
{
return OrthogonalTileIterator(*this);
}
/**
* Returns an iterator to the end of the tile area.
* @return The OrthogonalTileIterator.
*/
OrthogonalTileIterator OrthogonalTileArea::end() const
{
return OrthogonalTileIterator(OrthogonalTileArea());
}
/**
* Create a diagonal tile area from two corners.
* @param start First corner of the area.
* @param end Second corner of the area.
*/
DiagonalTileArea::DiagonalTileArea(TileIndex start, TileIndex end) : tile(start)
{
assert(start < Map::Size());
assert(end < Map::Size());
/* Unfortunately we can't find a new base and make all a and b positive because
* the new base might be a "flattened" corner where there actually is no single
* tile. If we try anyway the result is either inaccurate ("one off" half of the
* time) or the code gets much more complex;
*
* We also need to increment/decrement a and b here to have one-past-end semantics
* for a and b, just the way the orthogonal tile area does it for w and h. */
this->a = TileY(end) + TileX(end) - TileY(start) - TileX(start);
this->b = TileY(end) - TileX(end) - TileY(start) + TileX(start);
if (this->a > 0) {
this->a++;
} else {
this->a--;
}
if (this->b > 0) {
this->b++;
} else {
this->b--;
}
}
/**
* Does this tile area contain a tile?
* @param tile Tile to test for.
* @return True if the tile is inside the area.
*/
bool DiagonalTileArea::Contains(TileIndex tile) const
{
int a = TileY(tile) + TileX(tile);
int b = TileY(tile) - TileX(tile);
int start_a = TileY(this->tile) + TileX(this->tile);
int start_b = TileY(this->tile) - TileX(this->tile);
int end_a = start_a + this->a;
int end_b = start_b + this->b;
/* Swap if necessary, preserving the "one past end" semantics. */
if (start_a > end_a) {
int tmp = start_a;
start_a = end_a + 1;
end_a = tmp + 1;
}
if (start_b > end_b) {
int tmp = start_b;
start_b = end_b + 1;
end_b = tmp + 1;
}
return (a >= start_a && a < end_a && b >= start_b && b < end_b);
}
/**
* Move ourselves to the next tile in the rectangle on the map.
*/
TileIterator &DiagonalTileIterator::operator++()
{
assert(this->tile != INVALID_TILE);
/* Determine the next tile, while clipping at map borders */
bool new_line = false;
do {
/* Iterate using the rotated coordinates. */
if (this->a_max == 1 || this->a_max == -1) {
/* Special case: Every second column has zero length, skip them completely */
this->a_cur = 0;
if (this->b_max > 0) {
this->b_cur = std::min(this->b_cur + 2, this->b_max);
} else {
this->b_cur = std::max(this->b_cur - 2, this->b_max);
}
} else {
/* Every column has at least one tile to process */
if (this->a_max > 0) {
this->a_cur += 2;
new_line = this->a_cur >= this->a_max;
} else {
this->a_cur -= 2;
new_line = this->a_cur <= this->a_max;
}
if (new_line) {
/* offset of initial a_cur: one tile in the same direction as a_max
* every second line.
*/
this->a_cur = abs(this->a_cur) % 2 ? 0 : (this->a_max > 0 ? 1 : -1);
if (this->b_max > 0) {
++this->b_cur;
} else {
--this->b_cur;
}
}
}
/* And convert the coordinates back once we've gone to the next tile. */
uint x = this->base_x + (this->a_cur - this->b_cur) / 2;
uint y = this->base_y + (this->b_cur + this->a_cur) / 2;
/* Prevent wrapping around the map's borders. */
this->tile = x >= Map::SizeX() || y >= Map::SizeY() ? INVALID_TILE : TileXY(x, y);
} while (this->tile > Map::Size() && this->b_max != this->b_cur);
if (this->b_max == this->b_cur) this->tile = INVALID_TILE;
return *this;
}
/**
* Create either an OrthogonalTileIterator or DiagonalTileIterator given the diagonal parameter.
* @param corner1 Tile from where to begin iterating.
* @param corner2 Tile where to end the iterating.
* @param diagonal Whether to create a DiagonalTileIterator or OrthogonalTileIterator.
* @return unique_ptr to the allocated TileIterator.
*/
/* static */ std::unique_ptr<TileIterator> TileIterator::Create(TileIndex corner1, TileIndex corner2, bool diagonal)
{
if (diagonal) {
return std::make_unique<DiagonalTileIterator>(corner1, corner2);
}
return std::make_unique<OrthogonalTileIterator>(corner1, corner2);
}